Whither The Chip Shortage?

Do you remember the global chip shortage? Somehow it seems so long ago, but it’s not even really been three years yet. Somehow, I had entirely forgotten about it, until two random mentions about it popped up in short succession, and brought it all flooding back like a repressed bad dream.

Playing the role of the ghost-of-chip-shortage-past was a module for a pair of FPV goggles. There are three versions of the firmware available for download at the manufacturer’s website, and I had to figure out which I needed. I knew it wasn’t V1, because that was the buggy receiver PCB that I had just ordered the replacement for. So it was V2 or V3, but which?

Digging into it, V2 was the version that fixed the bug, and V3 was the redesign around a different microcontroller chip, because they couldn’t get the V2 one during the chip shortage.

I saw visions of desperate hackers learning new toolchains, searching for alternative parts, finding that they could get that one chip, but that there were only 20 of them left and they were selling for $30 instead of $1.30. I know a lot of you out there were designing through these tough couple years, and you’ve all probably got war stories.

And yet here we are, definitively post-chip-shortage. How can you be sure? A $30 vape pen includes a processor that we would have killed for just three years ago. The vape includes a touchscreen, just because. And it even has a Bluetooth LE chip that it’s not even using. My guess is that the hardware designers just put it in there hoping that the firmware team would get around to using it for something.

This vape has 16 MB of external SPI Flash! During the chip shortage, we couldn’t even get 4 MB SPI flash.

It’s nice to be on the other side of the chip shortage. Just order whatever parts you want and you get them, but don’t take for granted how luxurious that feels. Breathe easy, and design confidently. You can finally use that last genuine STM32F103 blue pill board without fear of it being the last one on earth.

(Featured image is not an actual photo of the author, although he does sometimes have that energy.)

2025 Hackaday Superconference: Announcing Our Workshops And Tickets

Can you feel the nip of fall in the air? That can only mean one thing: Supercon is just around the corner. The next few weeks are going to bring a blitz of Supercon-related reveals, and we’re starting off with a big one: the workshops.

Supercon is the Ultimate Hardware Conference, and you need to be there to attend a workshop. Both workshop and general admission tickets are on sale now! Don’t wait — they sell out fast.

Continue reading “2025 Hackaday Superconference: Announcing Our Workshops And Tickets”

Worst Clock Ever Teaches You QR Codes

[WhiskeyTangoHotel] wrote in with his newest clock build — and he did warn us that it was minimalist and maybe less than useful. Indeed, it is nothing more than a super-cheap ESP32-C3 breakout board with an OLED screen and some code. Worse, you can’t even tell the time on it without pointing your cell phone at the QR code it generates. Plot twist: you skip the QR code and check the time on your phone.

But then we got to thinking, and there is actually a lot to learn from here on the software side. This thing pulls the time down from an NTP server, formats it into a nice human-readable string using strftime, throws that string into a QR code that’s generated on the fly, and then pushes the bits out to the screen. All in a handful of lines of code.

As always, the secret is in the libraries and how you use them, and we wanted to check out the QR code generator, but we couldn’t find an exact match for QRCodeGenerator.h. Probably the most popular library is the Arduino QRCode library by [ricmoo]. It’s bundled with Arduino, but labelled version 0.0.1, which we find a little bit modest given how widely it’s used. It also hasn’t been updated in eight years: proof that it just works?

That library drew from [nayuki]’s fantastically documented multi-language QR-Code-generator library, which should have you covered on any platform you can imagine, with additional third-party ports to languages you haven’t even heard of. That’s where we’d go for a non-Arduino project.

What library did [WTH] use? We hope to find out soon, but at least we found a couple good candidates, and it appears to be a version of one or the other.

We’ve seen a lot of projects where the hacker generates a QR code using some online tool, packs the bits into a C header array, and displays that. That’s fine when you only need a single static QR code, but absolutely limiting when you want to make something dynamic. You know, like an unreadable clock.

You will not be surprised to know that this isn’t the first unreadable QR-code clock we’ve featured here. But it’s definitely the smallest and most instructive.

Continue reading “Worst Clock Ever Teaches You QR Codes”

PCBs The Prehistoric Way

When we see an extremely DIY project, you always get someone who jokes “well, you didn’t collect sand and grow your own silicon”. [Patrícia J. Reis] and [Stefanie Wuschitz] did the next best thing: they collected local soil, sieved it down, and fired their own clay PCB substrates over a campfire. They even built up a portable lab-in-a-backpack so they could go from dirt to blinky in the woods with just what they carried on their back.

This project is half art, half extreme DIY practice, and half environmental consciousness.  (There’s overlap.)  And the clay PCB is just part of the equation. In an effort to approach zero-impact electronics, they pulled ATmega328s out of broken Arduino boards, and otherwise “urban mined” everything else they could: desoldering components from the junk bin along the way.

The traces themselves turned out to be the tricky bit. They are embossed with a 3D print into the clay and then filled with silver before firing. The pair experimented with a variety of the obvious metals, and silver was the only candidate that was both conductive and could be soldered to after firing. Where did they get the silver dust? They bought silver paint from a local supplier who makes it out of waste dust from a jewelry factory. We suppose they could have sat around the campfire with some old silver spoons and a file, but you have to draw the line somewhere. These are clay PCBs, people!

Is this practical? Nope! It’s an experiment to see how far they can take the idea of the pre-industrial, or maybe post-apocalyptic, Arduino. [Patrícia] mentions that the firing is particularly unreliable, and variations in thickness and firing temperature lead to many cracks. It’s an art that takes experience to master.

We actually got to see the working demos in the flesh, and can confirm that they did indeed blink! Plus, they look super cool. The video from their talk is heavy on theory, but we love the practice.

DIY clay PCBs make our own toner transfer techniques look like something out of the Jetsons.

Continue reading “PCBs The Prehistoric Way”

Smooth! Non-Planar 3D Ironing

Is 2025 finally the year of non-planar 3D printing? Maybe it won’t have to be if [Ten Tech] gets his way!

Ironing is the act of going over the top surface of your print again with the nozzle, re-melting it flat. Usually, this is limited to working on boring horizontal surfaces, but no more! This post-processing script from [Tenger Technologies], coupled with a heated, ball-shaped attachment, lets you iron the top of arbitrary surfaces.

At first, [Ten Tech] tried out non-planar ironing with a normal nozzle. Indeed, we’ve seen exactly this approach taken last year.  But that approach fails at moderate angles because the edge on the nozzle digs in, and the surrounding hot-end parts drag.

[Ten Tech]’s special sauce is taking inspiration from the ball-end mill finishing step in subtractive CNC work: he affixed the round tip of a rivet on the end of a nozzle, and insulating that new tool turned it into an iron that could smooth arbitrary curvy top layers.

One post-processing script later, and the proof of concept is working. Check out the video below to see it in action. As it stands, this requires a toolhead swap and the calibration of a whole bunch of new parameters, but it’s a very promising new idea for the community to iterate on. We love the idea of a dedicated tool and post-processing smoother script working together in concert.

Will 2025 be the year of non-planar 3DP? We’ve seen not one but two superb multi-axis non-planar printer designs so far this year: one from [Joshua Bird] and the other from [Daniel] of [Fractal Robotics]. In both cases, they are not just new machines, but are also supported with novel open-source slicers to make them work. Now [Ten Tech]’s ironer throws its hat in the ring. What will we see next?

Thanks to [Gustav Persson] for the tip!

Continue reading “Smooth! Non-Planar 3D Ironing”

2025 Hackaday Component Abuse Challenge: Let The Games Begin!

In theory, all parts are ideal and do just exactly what they say on the box. In practice, everything has its limits, most components have non-ideal characteristics, and you can even turn most parts’ functionality upside down.

The Component Abuse Challenge celebrates the use of LEDs as photosensors, capacitors as microphones, and resistors as heat sources. If you’re using parts for purposes that simply aren’t on the label, or getting away with pushing them to their absolute maximum ratings or beyond, this is the contest for you.

If you committed these sins against engineering out of need, DigiKey wants to help you out. They’ve probably got the right part, and they’re providing us with three $150 gift certificates to give out to the top projects. (If you’re hacking just for fun, well, you’re still in the running.)

This is the contest where the number one rule is that you must break the rules, and the project has to work anyway. You’ve got eight weeks, until Nov 11th. Open up a project over at Hackaday.io, pull down the menu to enter in the contest, and let the parts know no mercy!

Honorable Mention Categories:

We’ve come up with a few honorable mention categories to get your ideas flowing. You don’t have to fit into one of these boxes to enter, but we’ll be picking our favorites in these four categories for a shout-out when we reveal the winners.

  • Bizarro World: There is a duality in almost every component out there. Speakers are microphones, LEDs are light sensors, and peltier coolers generate electricity. Turn the parts upside down and show us what they can do.
  • Side Effects: Most of the time, you’re sad when a part’s spec varies with temperature. Turn those lemons into lemonade, or better yet, thermometers.
  • Out of Spec: How hard can you push that MOSFET before it lets go of the magic smoke? Show us your project dancing on the edge of the abyss and surviving.
  • Junk Box Substitutions: What you really needed was an igniter coil. You used an eighth-watt resistor, and got it hot enough to catch the rocket motor on fire. Share your parts-swapping exploits with us.

Inspiration

Diodes can do nearly anything.  Their forward voltage varies with temperature, making them excellent thermometers. Even the humble LED can both glow and tell you how hot it is. And don’t get us started on the photo-diode. They are not just photocells, but radiation detectors.

Here’s a trick to double the current that a 555 timer can sink. We’d love to see other cases of 555 abuse, of course, but any other IC is fair game.

Resistors get hot. Thermochromic paint changes color with temperature. Every five years or so, we see an awesome new design. This ancient clock of [Sprite_tm]’s lays the foundation, [Daniel Valuch] takes it into the matrix, and [anneosaur] uses the effect to brighten our days.

Of course, thin traces can also be resistors, and resistors can get really hot. Check out [Carl Bujega]’s self-soldering four-layer PCB. And while magnetism is nearly magic, a broken inductor can still be put to good use as a bike chain sensor.

Or maybe you have a new twist on the absolutely classic LEDs-as-light-sensors? Just because it’s been done since the early says of [Forrest Mims] doesn’t mean we don’t want to see your take.

Get out there and show us how you can do it wrong too.

Keep Reading, Keep Watching

I’ve been flying quadcopters a fair bit lately, and trying to learn some new tricks also means crashing them, which inevitably means repairing them. Last weekend, I was working on some wiring that had gotten caught and ripped a pad off of the controller PCB. It wasn’t so bad, because there was a large SMT capacitor nearby, and I could just piggyback on that, but the problem was how to re-route the wires to avoid this happening again.

By luck, I had just watched a video where someone else was building up a new quad, and had elegantly solved the exact same routing problem. I was just watching the video because I was curious about the frame in question, and I had absolutely no idea that it would contain the solution to a problem that I was just about to encounter, but because I was paying attention, it make it all a walk in the park.

I can’t count the number of times that I’ve had this experience: the blind luck of having just read or seen something that solves a problem I’m about to encounter. It’s a great feeling, and it’s one of the reasons that I’ve always read Hackaday – you never know when one hacker’s neat trick is going to be just the one you need next week. Indeed, that’s one of the reasons that we try to feature not just the gonzo hacks that drill down deep on a particular feat, but also the little ones too, that solve something in particular in a neat way. Because reading up on the hacks is free, and particularly cheap insurance against tomorrow’s unexpected dilemmas.

Read more Hackaday!