Close-Up On The RP2350 HSTX Peripheral

The new Raspberry Pi Pico 2 with its RP2350 microcontroller has only been with us for a short time, and thus its capabilities are still being tested. One of the new peripherals is HSTX, for which the description “High speed serial port” does not adequately describe how far it is from the humble UART which the name might suggest. CNX Software have taken a look at its capabilities, and it’s worth a read.

With a 150 MHz clock and 8 available pins, it’s a serial output with a combined bandwidth of 2400 Mbps, which immediately leaves all manner of potential for streamed outputs. On the RP2040 for example a DVI output was made using the PIO peripherals, while here the example code shows how to use these pins instead. We’re guessing it will be exploited for all manner of pseudo-analogue awesomeness in the manner we’re used to with the I2S peripherals on the EP32. Of course, there’s no corresponding input, but that still leaves plenty of potential.

Have a quick read of our launch coverage of the RP2350, and the Pico 2 board it’s part of.

A USA Feature For A Europe-Market Sony Receiver

A feature of many modern network-connected entertainment devices is that they will play streamed music while on standby mode. This so-called “network standby”is very useful if you fancy some gentle music but don’t want the Christmas lights or the TV. It was a feature [Caramelfur] missed on their Sony AV receiver, something especially annoying because it’s present on the US-market equivalent of their European model. Some gentle hackery ensued, and now the rece3iver follows its American cousin.

A first examination of the firmware found the two downloads to be identical, so whatever differences had to be in some form of configuration. Investigating what it exposed to the network led to a web server with device configuration parameters. Some probing behind the scenes and a bit of lucky guesswork identified the endpoint to turn on network standby, and there it was, the same as the US market model. Should you need it, the tooling is in a GitHub repository.

This isn’t the first time we’ve seen identical hardware being shipped with different firmwares in Europe from that in the USA, perhaps our most egregious example was a Motorola phone with a much earlier Android version for Europeans. We don’t understand why manufacturers do it, in particular with such an innocuous feature as network standby. If you have a Sony receiver you can now fix it, but you shouldn’t have to.

RJ45, Devcore, CC0.

Make A Catch With A 3D Printed Rod

When we think of fishing rods, the image brought to mind is one of a tweed-clad fisherman in his waders in a wild salmon stream, his line whipping about as it guides the fly over the surface of the water. Angling is a pursuit with a heritage, and having a lengthy rod seems an essential for its enjoyment. But perhaps your tackle needn’t be such an important factor, and in that spirit here’s [3dcreation] with a tiny but fully functional 3D printed fishing rod.

If you’ve ever seen a fisherman working through a hole in the ice, you may have some idea of the type of rod in question, it’s a stubby affair half handle and half rod, with a rudimentary reel in the middle. In the pictures it’s loaded up with line, weight ready to go, so we can see how it’s supposed to work. We’re not anglers here though, so the question of whether it would indeed work is one for your imagination.

Perhaps surprisingly, few anglers find their way onto these pages. One of the few that has, used a drone.

Help The LEGO Camera Become A Reality

Some time over a year ago, we told you about a camera. Not just any camera, but a fully-functional 35mm film camera made entirely of LEGO, and with a pleasingly retro design into the bargain. It’s the work of [Zung92], and it can be found on the LEGO Ideas website.

You might now be asking why we’re talking about it again so soon, and the answer comes in its approaching the deadline for being considered by LEGO for a set. Projects on the Ideas website move forward when they achieve 10,000 supporters, and this one’s just shy of 8,000 with a month to go. We like this project and we think it deserves to see the light of day, and perhaps with your help it can.

When we covered this project last time we lamented the lack of technical detail, so we’re pleased to see a glimpse inside it as part of a manual uploaded to the updates page. We’d be the first to remark that with its LEGO part plastic lens and quarter-frame pictures it won’t be the best camera ever, but that’s hardly the point. Cameras like this one are a challenge, and it seems as though this one is perfect for the competition with a difference.

The First New Long Wave Radio Station Of This Millennium

The decline of AM broadcast radio is a slow but inexorable process over much of the world, but for regions outside America there’s another parallel story happening a few hundred kilohertz further down the spectrum. The long wave band sits around the 200kHz mark and has traditionally carried national-level programming due to its increased range. Like AM it’s in decline due to competition from FM, digital, and online services, and one by one the stations that once crowded this band are going quiet. In the middle of all this it’s a surprise then to find a new long wave station in the works in the 2020s, bucking all contemporary broadcasting trends. Arctic 252 is based in Finland with programming intended to be heard across the Arctic region and aims to start testing in September.

The hack in this is that it provides an opportunity for some low-frequency DXing, and given the arctic location, it would be extremely interesting to hear how far it reaches over the top of the world into the northern part of North America. The 252KHz frequency is shared with a station in North Africa that may hinder reception for some Europeans, but those with long memories in north-west Europe will find it fairly empty as it has been vacated in that region by the Irish transmitter which used to use it.

So if you have a receiver capable of catching long wave and you think you might be in range, give it a listen. Closer to where this article is being written, long wave stations are being turned off.

Harris & Ewing, photographer, Public domain.

A Tiny Knob Keeps You In Control

There are many forms of human interface device beyond the ubiquitous keyboard and mouse, but when it comes to fine-tuning a linear setting such as a volume control there’s nothing quite like a knob. When it comes to peripherals it’s not the size that matters, as proven by  [Stefan Wagner] with the Tiny Knob. It’s a very small PCB with a rotary encoder and knob, an ATtiny85, a USB port, and not much else.

It uses the V-USB software implementation of USB HID, and should you have a need for a Tiny Knob of your own you can find all the files for it in a GitHub repository. There’s even a very professional-looking 3D-printed enclosure for the finishing touch. We like this project for its simplicity, and we think you might too.

Over the years we’ve brought you more than one knob, they appear to be a popular subject for experimentation. If you’re up for more, have a look at this one.

The Waveguide Explanation You Wish You’d Had At School

Anyone who has done an electronic engineering qualification will at some point have had to get to grips with transmission lines, and then if they are really lucky, waveguides. Perhaps there should be one of those immutable Laws stating that for each step in learning about these essential parts, the level of the maths you are expected to learn goes up in an exponential curve, for it’s certainly true that most of us breathe a hefty sigh of relief when that particular course ends. It’s not impossible to understand waveguides though, and [Old Hack EE] is here to slice through the formulae with some straightforward explanations.

First of all we learn about the basics of propagation in a waveguide, then we look at the effects of dimension on frequency. Again, there’s little in the way of head-hurting maths, just real-world explanations of cutt-off frequencies, and of coupling techniques. For the first time we’ve seen, here are simple and understandable explanations of the different types of splitter, followed up by the famous Magic T. It’s all in the phase, this is exactly the stuff we wish we’d had at university.

The world needs more of this type of explanation, after all it’s rare to watch a YouTube video and gain an understanding of something once badly taught. Take a look, the video is below the break.

Continue reading “The Waveguide Explanation You Wish You’d Had At School”