It’s A Bench, But It’s Not Benchy

Whatever the nuances are surrounding the reported taking down of remixes derived from the famous Benchy 3D printer stress test, it was inevitable that in its aftermath there would be competing stress tests appear under more permissive licensing. And so it has come to pass, in the form of [Depep1]’s Boaty, a model that’s not a boat, but a bench. Sadly this is being written away from a 3D printer so we can’t try it, but we can immediately see that its low bed contact area from having spindly legs would be a significant test for many printers’ bed adhesion, and it has overhangs and bridges aplenty.

It’s always interesting to see new takes on a printer stress test, after all we can all use something to check the health of our machines. But the Benchy saga isn’t something we think should drive you away from the little boat we know and love, as it remains an open-source model as it always has been. We don’t know the exact reasons why the derivatives were removed, but we understand from Internet scuttlebut that the waters may be a little more cloudy than at first supposed. If there’s any moral at all to the story, it lies in reading and understanding open source licences, rather than just assuming they all allow us to do anything we want.

Meanwhile it’s likely this model will be joined by others, and we welcome that. After all, innovation should be part of what open source does.

Missed the Benchy takedown story? Catch up here.

Thanks [Jeremy G] for the tip.

Tactility; The ESP32 Gets Another OS

Doing the rounds this week is a new operating system for ESP32 microcontrollers, it’s called Tactility, and it comes from [Ken Van Hoeylandt]. It provides a basic operating system level with the ability to run apps from an SD card, and it has the choice of a headless version or an LVGL-based touch UI.

Supported devices so far are some Lillygo and M5Stack boards, with intriguingly, support in the works for the Cheap Yellow Display board that’s caught some attention recently. The term “ESP32” is now a wide one encompassing Tensilica and RISC-V cores and a range of capabilities, so time will tell how flexible it is for all branches of the family.

We find this OS to be interesting, both in its own right and because it joins at least two others trying to do the same thing. There’s [Sprite_TM]’s PocketSprite mini console, and the operating system used by the series of Netherlands hacker camp badges,  We’ll be trying to get a device running it, in order to give you a look at whether it’s suitable for your projects. If it runs well on the cheaper hardware, it could be a winner!

Hackaday Podcast Episode 303: The Cheap Yellow Display, Self-Driving Under $1000, And Don’t Remix That Benchy

As the holiday party season fades away into memory and we get into the swing of the new year, Elliot Williams is joined on the Hackaday Podcast by Jenny List for a roundup of what’s cool in the world of Hackaday. In the news this week, who read the small print and noticed that Benchy has a non-commercial licence? As the takedown notices for Benchy derivatives fly around, we muse about the different interpretations of open source, and remind listeners to pay attention when they choose how to release their work.

The week gave us enough hacks to get our teeth into, with Elliot descending into the rabbit hole of switch debouncing, and Jenny waxing lyrical over a crystal oscillator. Adding self-driving capability to a 30-year-old Volvo caught our attention too, as did the intriguing Cheap Yellow Display, an ESP32 module that has (almost) everything. Meanwhile in the quick hacks, a chess engine written for a processor architecture implemented entirely in regular expressions impressed us a lot, as did the feat of sending TOSLINK across London over commercial fibre networks. Enjoy the episode, and see you again next week!

Continue reading “Hackaday Podcast Episode 303: The Cheap Yellow Display, Self-Driving Under $1000, And Don’t Remix That Benchy”

SerenityOS On Real Hardware

One of the problems facing any developer working on their own operating system is that of hardware support. With many thousands of peripherals and components that can be found in a modern computer, keeping up requires either the commercial resources of Microsoft or the huge community of Linux.

For a small project such as SerenityOS this becomes a difficult task, and for that reason the primary way to run that OS has always been in an emulator. [Sdomi] however has other ideas, and has put a lot of effort to getting the OS to run on some real hardware. The path to that final picture of a laptop with a SerenityOS desktop is long, but it makes for a fascinating read.

The hardware in question is an Intel powered Dell Chromebook. An odd choice you might think, but they’re cheap and readily available, and they have some useful debugging abilities built in. We’re treated to an exploration of the hardware and finding those debug ports, and since the USB debugging doesn’t work, a Pi Pico clone is squeezed into the case. We like that it’s wired up to the flash chip as well as serial.

Getting access to the serial port from the software turned out to be something of a pain, because the emulated UART wasn’t on the port you’d expect. Though it’s an Intel machine it’s not a PC clone, so it has no need. Some epic hackery involving rerouting serial to the PC debug port ensued, enabling work to start on an MMC driver for the platform. The eventual result is a very exclusive laptop, maybe the only one running SerenityOS on hardware.

We like this OS, and we hope this work will lead to it becoming usable on more platforms. We took a look at it back in 2023, and it’s good to hear that it’s moving forward.

It’s IP, Over TOSLINK!

At the recent 38C3 conference in Germany, someone gave a talk about sending TOSLINK digital audio over fiber optic networks rather than the very low-end short distance fibre you’ll find behind your CD player. This gave [Manawyrm] some ideas, so of course the IP-over TOSLINK network was born.

TOSLINK is in effect I2S digital audio as light, so it carries two 44.1 kilosamples per second 16-bit data streams over a synchronous serial connection. At 1544 Kbps, this is coincidentally about the same as a T1 leased line. The synchronous serial link of a TOSLINK connection is close enough to the High-Level Data Link Control, or HDLC, protocol used in some networking applications, and as luck would have it she had some experience in using PPP over HDLC. She could configure her software from that to use a pair of cheap USB sound cards with TOSLINK ports, and achieve a surprisingly respectable 1.47 Mbit/s.

We like this hack, though we can see it’s not entirely useful and we think few applications will be found for it. But she did it because it was there, and that’s the essence of this game. Now all that needs to happen is for someone to use it in conjunction with the original TOSLINK-over network fiber, for a network-over-TOSLINK-over-network abomination.

A Street For Every Date

Different cultures have their own conventions for naming locations, for example in the United Kingdom there are plenty of places named for monarchs, while in many other countries there are not. An aspect of this fascinated [Ben Ashforth], who decided to find all the streets in Europe named after auspicious dates, and then visit enough to make a calendar. He gave a lightning talk about it at last year’s EMF Camp, which we’ve embedded below.

Starting with an aborted attempt to query Google Maps, he then moved on to the OpenStreetMap database. From there he was able to construct a list of date-related street name across the whole of Europe, and reveal a few surprising things about their distribution. He came up with a routing algorithm to devise the best progression in which to see them, and with a few tweaks to account for roads whose names had changed, arrived at an epic-but-efficient traversal of the continent. The result is a full year’s calendar of street names, which you can download from his website.

Being used to significant Interrail travel where this is written, we approve of an algorithmically generated Euro trip. We’re indebted to [Barney Livingstone] for the tip, and we agree with him that 150 slides in a 5 minute talk is impressive indeed.

Continue reading “A Street For Every Date”

38C3: It’s TOSLINK, Over Long Distance Fibre

If you’ve owned a CD player or other piece of consumer digital audio gear manufactured since the 1980s, the chances are it has a TOSLINK port on the back. This is a fairly simple interface that sends I2S S/PDIF digital audio data down a short length of optical fibre, and it’s designed to run between something like a CD player and an external DAC. It’s ancient technology in optical fibre terms, with a lowish data rate and plastic fibre, but consider for a minute whether it could be adapted for modern ultra-high-speed conenctions. It’s what [Ben Cartwright-Cox] has done, and he delivered a talk about it at the recent 38C3 event in Germany.

if you’ve cast you eye over any fibre networking equipment recently, you’ll be familiar with SFP ports. These are a standard for plug-in fibre terminators, and they can be had in a wide variety of configurations for different speeds, topographies, and wavelengths. They’re often surprisingly simple inside, so he wondered if he could use them to carry TOSLINK instead of a more conventional network. And it worked, with the simple expedient of driving an SFP module with an LVDS driver to make a differential signal. There follows a series of experiments calling in favours from friends with data centre space in various locations around London, finally ending up with a 140 km round trip for CD-quality audio.

It’s an interesting experiment, but perhaps the most value here is in what it reveals to us about the way optical networking systems work. Most of us don’t spend our days in data centres, so that’s an interesting technology to learn about. The video of the talk itself is below the break.

Continue reading “38C3: It’s TOSLINK, Over Long Distance Fibre”