Commodore Is Back Selling New C64s, But Should You Buy Them?

It’s hard to argue with nostalgia, but you can toss a bucket of cold facts over it. In the case of the recent rescuing of the Commodore brand from the clutches of relabeling of generic electronics by [Perifractic] of Retro Recipes, we got [The Retro Shack] doing the proverbial bucket dumping in a new video. Basically the question is whether the fresh Commodore 64 offerings by the new-and-improved Commodore are what you really want, or need.

The thing is that over the decades many people have created all the bits that you need to build your own classical C64, or even buy one off-the-shelf, with people like [bwack] having reverse-engineered the various C64 mainboards. These can be populated with drop-in replacements for chips like the SID, VIC-II, CIAs and others that are readily available, along with replica cases and keyboards. If you crave something less bulky and complex, you can run a bare metal C64 emulator like BMC64 on a Raspberry Pi, or just run the VICE emulator on your platform of choice. There’re also options like the full-sized TheC64 and Ultimate 64 Elite II systems that you can buy ready to go.

Basically, there is a whole gamut of ways to get some part of the C64 experience, ranging from emulator-only to a full hardware DIY or pre-assembled format. Each of which come with their own price tag, starting at $0 for running VICE on your existing system. With so much choice we can only hope that the renewed Commodore company will become something more than Yet Another C64 Experience.

Continue reading “Commodore Is Back Selling New C64s, But Should You Buy Them?”

MorPhlex: The TPU Filament That Goes Soft After You Print It

In FDM 3D printing cycles TPU is a bit of a special filament. Not so much because of its properties, but because it’s rather stretchy even as a filament, which makes especially printing certain hardness grades of TPU into somewhat of an nightmare. An interesting new contender here comes from a company called BIQU, who reckon that their ‘MorPhlex’ TPU solves many of those problems. Recently the [ModBot] channel on YouTube got sent a spool of the filament for testing.

The BIQU MorPhlex TPU filament being turned into squishy slippers. (Credit: ModBot, YouTube)
The BIQU MorPhlex TPU filament being turned into squishy slippers. (Credit: ModBot, YouTube)

The ‘magic’ here is that this TPU claims to be a 90A TPU grade while on the spool, but after printing it becomes 75A, meaning a lot softer and squishier. Perhaps unsurprisingly, a big selling point on their product page is that you can print squishy shoes with it. Beyond this is claims to be compatible with ‘most FDM printers’, and the listed printing parameters are typical for TPU in terms of extruder and bed temperature.

After drying the filament as recommended for TPU in general, test prints were printed on a Bambu Lab H2D. Here BIQU recommends not using the AMS, but rather the dedicated TPU feeding channel. For the test prints some slippers were printed over the course of two days. In hindsight glue stick should have been applied to make parts removal easier.

The slippers were indeed squishy, but the real test came in the form of a Shore A hardness meter and some test cube prints. This showed an 80 – 85A for the BIQU MorPhlex test cube depending on whether to test the side or top. As the product datasheet indicates a final hardness of 75A +/- 3A, one could argue that it’s kind-of in spec, but it mostly raises questions on how parameters like temperature and extrusion speed affect the final result.

2003 Samsung CD player playing a clear vs normal audio CD. (Credit: Adrian's Digital Basement)

Why Lorde’s Clear CD Has So Many Playback Issues

Despite the regularly proclaimed death of physical media, new audio albums are still being published on CD and vinyl. There’s something particularly interesting about Lorde’s new album Virgin however — the CD is a completely clear disc. Unfortunately there have been many reports of folks struggling to get the unique disc to actually play, and some sharp-eyed commentators have noted that the CD doesn’t claim to be Red Book compliant by the absence of the Compact CD logo.

The clear Lorde audio CD in all its clear glory. (Credit: Adrian's Digital Basement, YouTube)
The clear Lorde audio CD in all its clear glory. (Credit: Adrian’s Digital Basement, YouTube)

To see what CD players see, [Adrian] of Adrian’s Digital Basement got out some tools and multiple CD players to dig into the issue. These players range from a 2003 Samsung, a 1987 NEC, and a cheap portable Coby player. But as all audio CDs are supposed to adhere to the Red Book standard, a 2025 CD should play just as happily on a 1980s CD player as vice versa.

The first step in testing was to identify the laser pickup (RF) signal test point on the PCB of each respective player. With this hooked up to a capable oscilloscope, you can begin to see the eye pattern forming. In addition to being useful with tuning the CD player, it’s also an indication of the signal quality that the rest of the CD player has to work with. Incidentally, this is also a factor when it comes to CD-R compatibility.

While the NEC player was happy with regular and CD-R discs, its laser pickup failed to get any solid signal off the clear Lorde disc. With the much newer Samsung player (see top image), the clear CD does play, but as the oscilloscope shot shows, it only barely gets a usable signal from the pickup. Likewise, the very generic Coby player also plays the audio CD, which indicates that any somewhat modern CD player with its generally much stronger laser and automatic gain control ought to be able to play it.

That said, it seems that very little of the laser’s light actually makes it back to the pickup’s sensor, which means that along with the gain the laser output gets probably cranked up to 11, and with that its remaining lifespan will be significantly shortened. Ergo it’s probably best to just burn that CD-R copy of the album and listen to that instead.

Continue reading “Why Lorde’s Clear CD Has So Many Playback Issues”

Open Source Lithium-Titanate Battery Management System

Lithium-titanate (LTO) is an interesting battery chemistry that is akin to Li-ion but uses Li2TiO3 nanocrystals instead of carbon for the anode. This makes LTO cells capable of much faster charging and with better stability characteristics, albeit at the cost of lower energy density. Much like LiFePO4 cells, this makes them interesting for a range of applications where the highest possible energy density isn’t the biggest concern, while providing even more stability and long-term safety.

That said, LTO is uncommon enough that finding a battery management system (BMS) can be a bit of a pain. This is where [Vlastimil Slintak]’s open source LTO BMS project may come in handy, which targets single cell (1S) configurations with the typical LTO cell voltage of around 1.7 – 2.8V, with 3 cells in parallel (1S3P). This particular BMS was designed for low-power applications like Meshtastic nodes, as explained on the accompanying blog post which also covers the entire development and final design in detail.

The BMS design features all the stuff that you’d hope is on there, like under-voltage, over-voltage and over-current protection, with an ATtiny824 MCU providing the brains. Up to 1 A of discharge and charge current is supported, for about 2.4 Watt at average cell voltage. With the triple 1,300 mAh LTO cells in the demonstrated pack you’d have over 9 Wh of capacity, with the connected hardware able to query the BMS over I2C for a range of statistics.

Thanks to [Marcel] for the tip.

Hacking The Bluetooth-Enabled Anker Prime Power Bank

Selling power banks these days isn’t easy, as you can only stretch the reasonable limits of capacity and output wattage so far. Fortunately there is now a new game in town, with ‘smart’ power banks, like the Anker one that [Aaron Christophel] recently purchased for reverse-engineering. It features Bluetooth (BLE), a ‘smart app’ and a rather fancy screen on the front with quite a bit of information. This also means that there’s a lot to hack here beyond basic battery management system (BMS) features.

As detailed on the GitHub project page, after you get past the glue-and-plastic-clip top, you will find inside a PCB with a GD32F303 MCU, a Telink TLSR8253 BLE IC and the 240×240 ST7789 LCD in addition to a few other ICs to handle BMS functions, RTC and such. Before firmware version 1.6.2 you can simply overwrite the firmware, but Anker added a signature check to later firmware updates.

The BLE feature is used to communicate with the Anker app, which the official product page advertises as being good for real-time stats, smart charging and finding the power bank by making a loud noise. [Aaron] already reverse-engineered the protocol and offers his own alternative on the project page. Naturally updating the firmware is usually also done via BLE.

Although the BLE and mobile app feature is decidedly a gimmick, hacking it could allow for some interesting UPS-like and other features. We just hope that battery safety features aren’t defined solely in software, lest these power banks can be compromised with a nefarious or improper firmware update.

Continue reading “Hacking The Bluetooth-Enabled Anker Prime Power Bank”

Remembering James Lovell: The Man Who Cheated Death In Space

Many people have looked Death in the eye sockets and survived to tell others about it, but few situations speak as much to the imagination as situations where there’s absolutely zero prospect of rescuers swooping in. Top among these is the harrowing tale of the Apollo 13 moon mission and its crew – commanded by James “Jim” Lovell – as they found themselves stranded in space far away from Earth in a crippled spacecraft, facing near-certain doom.

Lovell and his crew came away from that experience in one piece, with millions tuning into the live broadcast on April 17 of 1970 as the capsule managed to land safely back on Earth, defying all odds. Like so many NASA astronauts, Lovell was a test pilot. He graduated from the US Naval Academy in Maryland, serving in the US Navy as a mechanical engineer, flight instructor and more, before being selected as NASA astronaut.

On August 7, 2025, Lovell died at the age of 97 at his home in Illinois, after a dizzying career that saw a Moon walk swapped for an in-space rescue mission like never seen before.

Continue reading “Remembering James Lovell: The Man Who Cheated Death In Space”

Exploring The TRS-80’s Color BASIC’s Random Number Function

Although these days we get to tap into many sources of entropy to give a pretty good illusion of randomness, home computers back in the 1980s weren’t so lucky. Despite this, their random number generators were good enough for games and such, as demonstrated by the [CoCo Town] YouTube channel.

The CoCo is the nickname for the TRS-80 Color Computer, which despite its name, shares absolutely nothing with the TRS-80. Its BASIC version is called Color BASIC, which like many others was based on Microsoft BASIC, so the video’s description should be valid for many other BASIC versions as well. In the video we’re first taken through a basic summary of what the floating point format is all about, before running through an example of the algorithm used by Color BASIC for its RND function, using a test program written in Color BASIC.

As described in the video, the used algorithm appears to be the linear congruential generator, which is a pseudo-random generator that requires minimal resources from the hardware it runs on. Of course, its main disadvantage is that it will fairly rapidly begin to repeat itself, especially with a limited number of output bits. This makes it a decent choice even today for something like simple game logic where you just want to get some variation without aiming for cryptographically secure levels of randomness.

Continue reading “Exploring The TRS-80’s Color BASIC’s Random Number Function”