3D Printed TPU Bellows With PLA Interface Layers

Of all FDM filament types, flexible ones such as TPU invite a whole new way of thinking, as well as applications. Case in point the TPU-based bellows that the [Functional Part Friday] channel on YouTube recently demonstrated.

The idea is quite straightforward: you print TPU and PLA in alternating layers, making sure that the TPU is connected to its previous layer in an alternating fashion. After printing, you peel the PLA and TPU apart, remove the PLA layers and presto, you got yourself bellows.

There were some issues along the way, of course. Case in point the differences between TPU from different brands (Sainsmart, Sunlu) that caused some headaches, and most of all the incompatibility between the Bambu Lab AMS and TPU that led to incredibly brittle TPU prints. This required bypassing the feed mechanism in the AMS, which subsequently went down a rabbit hole of preventing the PTFE tube from getting sucked into the AMS. Being able to print TPU & PLA at the same time also requires a printer with two independent extruders like the Bambu Lab H2D used here, as both materials do not mix in any way. Great news for H2D and IDEX printer owners, of course.

As for practical applications for bellows, beyond printing your own 1900s-era camera, accordion or hand air bellows, you can also create lathe way covers and so on.

Continue reading “3D Printed TPU Bellows With PLA Interface Layers”

Cabinentaxi layout as it existed in 1978, with labels by the Tim Traveller YT channel.

Germany’s Cabinentaxi: The Double-Sided Monorail That Wasn’t Meant To Be

The 1970s was a perfect time for alternative modes of transport to be trialed that might replace cars in the wake of the global oil crisis. One of these was the Cabinentaxi, or C-Bahn as it was later called, which was a variation on the standard suspended and monorail concepts.

It was a people mover concept, with ‘pods’ (or cabins) that’d ride either on top of or below the suspended track. It was tested intensively over the course of six years, performed admirably, and completely failed to materialize commercially due to budget crunch times around the world.

Image of the Cabinentaxi from a promotional video, showing carriages on top and below the monorail.

Recently [Tim Traveller] went to the muddy farm field that once housed the big test track (pictured above), of which nothing remains but the gates and a sign. Despite the fact that few people have heard of Cabinentaxi prior to seeing [Tim]’s video or reading this, there is a big Wikipedia entry on it, as well as a (German language) site dedicated to the technology.

What made the C-Bahn different from trains and buses were the smaller pods, high throughput capacity and ability to call a pod on demand at any of the stations. This kind of flexibility is what is seen more or less with today’s people moving systems at airports and some cities, except the C-Bahn was classified as a personal rapid transport (PRT), with on-demand pods that could travel between any two stations without stopping or delays. This is something that isn’t seen with public transport today, even if self-driving cars purport to one day do this kind of trick.

Considering that this technology died most due to economical circumstances, we remain hopeful to see its revival one day.

Continue reading “Germany’s Cabinentaxi: The Double-Sided Monorail That Wasn’t Meant To Be”

Optical Contact Bonding: Where The Macro Meets The Molecular

If you take two objects with fairly smooth surfaces, and put these together, you would not expect them to stick together. At least not without a liberal amount of adhesive, water or some other substance to facilitate a temporary or more permanent bond. This assumption gets tossed out of the window when it comes to optical contact bonding, which is a process whereby two surfaces are joined together without glue.

The fascinating aspect of this process is that it uses the intermolecular forces in each surface, which normally don’t play a major role, due to the relatively rough surfaces. Before intermolecular forces like Van der Waals forces and hydrogen bonds become relevant, the two surfaces should not have imperfections or contaminants on the order of more than a few nanometers. Assuming that this is the case, both surfaces will bond together in a way that is permanent enough that breaking it is likely to cause damage.

Although more labor-intensive than using adhesives, the advantages are massive when considering that it creates an effectively uninterrupted optical interface. This makes it a perfect choice for especially high-precision optics, but with absolutely zero room for error.

Continue reading “Optical Contact Bonding: Where The Macro Meets The Molecular”

Improving Flying Drones By Mimicking Flying Squirrels

With the ability to independently adjust the thrust of each of their four motors, quadcopters are exceptionally agile compared to more traditional aircraft. But in an effort to create an even more maneuverable drone platform, a group of South Korean researchers have studied adding flying squirrel tech to quadcopters. Combined with machine learning, this is said to significantly increase the prototype’s agility in an obstacle course.

Flying squirrels (tribe Pteromyini)) have large skin flaps (patagium) between their wrists and ankles which they use to control their flight when they glide from tree to tree, along with their fluffy squirrel tail. With flights covering up to 90 meters, they also manage to use said tail and patagium to air brake, which prevents them from smacking with bone jarring velocities into a tree trunk.

By taking these principles and adding a similar mechanism to a quadcopter for extending a patagium-like membrane between its rotors, the researchers could develop a new controller (thrust-wing coordination control, TWCC), which manages the extending of the membranes in coordination with thrust from the brushless motors. Rather than relying on trial-and-error to develop the controller algorithms, the researchers trained a recurrent neural network (RNN) which was pre-trained prior to first flights using simulation data followed by supervised learning to refine the model.

During experiments with obstacle avoidance on a test-track, the RNN-based controller worked quite well compared to a regular quadcopter. A disadvantage is of course that the range of these flying squirrel drones is less due to the extra weight and drag, but if one were to make flying drones that will perch on surfaces between dizzying feats of agility in the air, this type of drone tech might just be the ticket.

Continue reading “Improving Flying Drones By Mimicking Flying Squirrels”

The 386's main register bank, at the bottom of the datapath. The numbers show how many bits of the register can be accessed. (Credit: Ken Shirriff)

The Convoluted Way Intel’s 386 Implemented Its Registers

The fact that modern-day x86 processors still pretty much support the same operating systems and software as their ancestors did is quite a feat. Much of this effort had already been accomplished with the release of the 80386 (later 386) CPU in 1985, which was not only the first 32-bit x86 CPU, but was also backwards compatible with 8- and 16-bit software dating back to the 1970s. Making this work transparently was anything but straightforward, as [Ken Shirriff]’s recent analysis of the 80386’s main register file shows.

Labelled Intel 80386 die shot. (Credit: Ken Shirriff)
Labelled Intel 80386 die shot. (Credit: Ken Shirriff)

Using die shots of the 386’s registers and surrounding silicon, it’s possible to piece together how backwards compatibility was implemented. The storage cells of the registers are implemented using static memory (SRAM) as is typical, with much of the register file triple-ported (two read, one write).

Most interestingly is the presence of different circuits (6) to support accessing the register file for 8-, 16- or 32-bit writes and reads. The ‘shuffle’ network as [Ken] calls it is responsible for handling these distinct writes and reads, which also leads to the finding that the bottom 16 bits in the registers are actually interleaved to make this process work smoother.

Fortunately for Intel (and AMD) engineers, this feat wouldn’t have to be repeated again with the arrival of AMD64 and x86_64 many years later, when the 386’s mere 275,000 transistors on a 1 µm process would already be ancient history.

Want to dive even deeper in to the 386? This isn’t the first time [Ken] has looked at the iconic chip.

Testing A Cheap Bench Power Supply Sold On Amazon

We’ve all seen those cheap bench power supply units (PSUs) for sale online, promising specifications that would cost at least a hundred dollars or more if it were a name brand model. Just how much of a compromise are these (usually rebranded) PSUs, and should you trust them with your electronics? Recently [Denki Otaku] purchased a cheap unit off Amazon Japan for a closer look, and found it to be rather lacking.

Internals of the cheap bench PSU reviewed by Denki Otaku on YouTube.
Internals of the cheap bench PSU reviewed by Denki Otaku on YouTube.

Major compromises include the lack of an output power switch, no way to check the set current limit without shorting the output, very slow drop in output voltage while adjusting due to the lack of a discharge circuit, and other usability concerns. That’s when the electrical performance of the PSU got tested.

Right off the bat a major issue in this cheap switching mode PSU is clear, as it has 200 mV peak-to-peak noise on its output, meaning very little output filtering. The maximum power output rating was also far too optimistic, with a large voltage drop observed. Despite this, it generally worked well, and the internals – with a big aluminium plate as heatsink – look pretty clean with an interesting architecture.

The general advice is to get a bench PSU that has features like an output power button and an easy way to set the voltage and current limits. Also do not connect it to anything that cares about noise and ripple unless you know that it produces clean, filtered output voltages.

Continue reading “Testing A Cheap Bench Power Supply Sold On Amazon”

Neutron Flux Impact On Quartz Expansion Rate

Radiation-induced volumetric expansion (RIVE) is a concern for any concrete structures that are exposed to neutron flux and other types of radiation that affect crystalline structures within the aggregate. For research facilities and (commercial) nuclear reactors, RIVE is generally considered to be one of the factors that sets a limit on the lifespan of these structures through the cracking that occurs as for example quartz within the concrete undergoes temporary amorphization with a corresponding volume increase. The significance of RIVE within the context of a nuclear power plant is however still poorly studied.

A recent study by [Ippei Maruyama] et al. as published in the Journal of Nuclear Materials placed material samples in the LVR-15 research reactor in the Czech Republic to expose them to an equivalent neutron flux. What their results show is that at the neutron flux levels that are expected at the biological shield of a nuclear power plant, the healing effect from recrystallization is highly likely to outweigh the damaging effects of amorphization, ergo preventing RIVE damage.

This study follows earlier research on the topic at the University of Tokyo by [Kenta Murakami] et al., as well as by Chinese researchers, as in e.g. [Weiping Zhang] et al. in Nuclear Engineering and Technology. [Murayama] et al. recommend that for validation of these findings concrete samples from decommissioned nuclear plants are to be examined for signs of RIVE.

Heading image: SEM-EDS images of the pristine (left) and the irradiated (right) MC sample. (Credit: I. Murayama et al, 2022)