CNC Drag Knife Upgrade With Off-the-Shelf Blades

Drag Knives seem to be the overshadowed awkward kid on the playground of CNC equipment, but they have a definitive niche making stencils, vinyl stickers, and paper cuts. Unfortunately, the drag knife blades for CNC routers are pricey — over $100 for a single blade. [Brian] at the Grunblau Design Studio took the price point as a challenge to build his own end-effector. A few iterations later, he’s created his very own drag knife blade tool that accepts replaceable steel blades for cutting.

From constraint-driven concept, to a 3D printed proof-of-concept, to a fully machined aluminum prototype, [Brian’s] efforts hit all the highlights of a well-engineered project. At the end of the day, dull blades can be swapped for a few dollars, rather than shelling out another $150 for the off-the-shelf variant. We’ve seen bootstrapped CNC vinyl cutters before, but nothing that takes an original re-envisioning of the tool itself.

Exoskeleton Boots Put A Spring In Your Step

Human ancestors have been walking around on two legs for a few million years. We’d imagine that by now we’ve figured out a pretty efficient mechanism for getting around. Unconvinced, however, researchers at Carnegie Mellon University have developed an “exo”-boot that reduces the metabolic rate of walking by seven percent. Best of all, the mechanism requires no additional source of active power input besides the human legs that are wearing them.

Upon close inspection, the boots reduce the overall applied torque at the angle joint at a critical point where the heel begins to lift off the ground. Energy in, energy out. The spring ratchets to a loaded position as the user plants their foot. This ratchet releases, re-engaging the stored spring force as the user brings their heel back off the ground. A seven percent reduction in metabolic rate may not sound like much, but, according to the paper, it’s the equivalent of about four kilograms less weight in your backpack on that next hiking trip.

As for what specific costs are being reduced to lower the body’s metabolic rate, the researchers still aren’t completely sure. An off-the-cuff look at the joints and moments from a mechanics perspective won’t give us a sure-fire answer since the energy consumption processes of muscles are, well, complicated. In fact, by varying spring stiffness in their design, they discovered that springs that were either too stiff or too loose had no effect on the metabolic rate. Yes, they’ve certainly stumbled on a sweet spot in terms of well-mixed circumstances, but the answer behind why the new robot-legs work so smoothly will be a study for the future.

If you haven’t jumped into the world of exo-skeleton building, let [James Hobson] be your guide into pushing our bounds with homebrew mechanical advantages. Now let’s keep our fingers crossed for some long-fall boots.

via [The Washington Post]

Up-Close And Personal With Laser Cuts

Plenty of materials take the heated edge of a laser beam quite well, but many others don’t. Some release toxic fumes; others catch fire easily. For all the materials that don’t cut well (PVC and FR4, we’re looking at you!) and for those that do (hello, acrylic and Delrin) they’re each reacting to the heat of the laser beam in different ways. Lucky for us, these ways are well-characterized. So let’s take a look at how a laser cutter actually cuts through materials.

Continue reading “Up-Close And Personal With Laser Cuts”

Tales Of Garage Design: Achieving Precision From Imprecise Parts

Designing parts to fit perfectly together is hard. Whether it’s the coarseness of our fabrication tools or the procedures of the vendor who makes our parts, parts are rarely the exact dimension that we wish they were. Sadly, this is the penalty that we pay by living in a real world: none of our procedures (or even our measurement tools!) are perfect. In a world of imperfect parts, imperfect procedures, and imperfect measurement techniques, how on earth are we supposed to build anything that works? Fortunately, we’re in luck! From the brooding minds of past engineers, comes a suite of design techniques that can combat the imperfections of living in an erroneous world.

Continue reading “Tales Of Garage Design: Achieving Precision From Imprecise Parts”

Make A BLDC Motor From Scraps You Can Find In The Garage

Think you’ve got what it takes to build a homebrew brushless motor? As [JaycubL] shows us, it turns out that a bldc motor may be living in pieces right under your nose, in scraps that so many of us would otherwise toss aside. To get our heads turning, [JaycubL] takes us into the theory of brushless DC motors operate. He then builds a homebrew brushless motor using screws, a plastic container, a few bearings, a metal rod, some magnets, and a dab of epoxy. Finally, he gives it a whirl with an off-the-shelf motor controller.

This isn’t [JaycubL’s] first dive into homebrew brushless motors. For the curious, he’s also assembled a fully-functional brushless outrunner motor with a paint can housing.

Sure, understanding the principles is one thing, but being able to take the leap into the real world and find the functional beginnings of a motor from your scrap bin is an entirely different story! [JaycubL’s], dare we say, finesse of understanding the principles behind motor design makes us wonder: how many other functional higher-level electrical and mechanical components can we bootstrap from bitter scrap? To get you started, we’ll point you in the direction of this CNC router that’s just a few steps away from one trip to the hardware store.

Thanks for the tip, [John]!

Continue reading “Make A BLDC Motor From Scraps You Can Find In The Garage”

Insanely-Quick 3D Tracking With 1 Camera

Let’s face it: 3-dimensional odometry can be a computationally expensive problem often requiring expensive 3D cameras and optimized algorithms that can be difficult to wrap our head around. Nevertheless, researchers continue to push the bounds of visual odometry forward each year. This past year was no exception, as [Christian], [Matia], and [Davide] have tipped the scale in terms of speed with an algorithm that can track itself in 3D in real time.

In the video (after the break), the landmarks are sparse, the motion to track is relentlessly jagged, but SVO, or Semi-Fast Visual Odometry [PDF warning], keeps tracking its precision with remarkable consistency, making use of “high frequency texture” as a reference. Several other implementations require two cameras or a depth camera variant, but not SVO. It uses a single camera with a high frame rate between 55 and 300 frames per second. Best of all, the trio at the University of Zürich have made their codebase open source and available as a package for ROS.

Continue reading “Insanely-Quick 3D Tracking With 1 Camera”

The Hacker’s Notebook: A Mission Log For Every Project

While “writing it down” might seem like common sense, it wasn’t always the case. From the times of Ancient Greece, Plato tells a story of a worried Egyptian King, who, upon witnessing the invention of writing, remarks,

“If men learn this, it will implant forgetfulness in their souls; they will cease to exercise memory because they rely on that which is written, calling things to remembrance no longer from within themselves, but by means of external marks. [1]”

To some, the notebook was a dangerous device, a thief that would rob us of our memories [2]. Fortunately, these days, there’s plenty of evidence from our Psych texts that say we humans are pretty shabby at keeping the facts straight. In fact, each time we recall a memory, we change it! Here lies the beauty of the notebook. Have an idea for a new project? Why not log it somewhere for future reference? With diligence, the notebook can become our own personal hub for spurring on new project ideas.

Continue reading “The Hacker’s Notebook: A Mission Log For Every Project”