Rotary Phone Lives On As Arduino Kitchen Timer

It’s safe to say that few people still use rotary phones on a daily basis. Hell, most of us don’t even use landline telephones anymore. But just because these classic phones are no longer being used for their original purpose doesn’t necessarily mean they’re doomed to become e-waste.

[Scott-28] recently sent in a particularly well-documented project that turned an antique rotary phone into a digital kitchen timer using an internal Arduino. While we’re not sure practical is a word most folks would use to describe the resulting device, it’s certainly a conversation starter, and the details on how it was all implemented make for an interesting read.

As explained in the README, [Scott-28] first used an oscilloscope to figure out the pulses generated by the phone’s dial. From there, it was relatively easy to connect the dial to one of the pins on an Arduino Uno to determine which numbers the user had entered. The trickier part was getting the original bells to work — in North America, it takes up to 90 VAC to get a phone’s ringer going, which is quite a bit more than the lowly Arduino can handle.

Continue reading “Rotary Phone Lives On As Arduino Kitchen Timer”

Feast Your Eyes On These AI-Generated Sounds

The radio hackers in the audience will be familiar with a spectrogram display, but for the uninitiated, it’s basically a visual representation of how a range of frequencies are changing with time. Usually such a display is used to identify a clear transmission in a sea of noise, but with the right software, it’s possible to generate a signal that shows up as text or an image when viewed as a spectrogram. Musicians even occasionally use the technique to hide images in their songs. Unfortunately, the audio side of such a trick generally sounds like gibberish to human ears.

Or at least, it used to. Students from the University of Michigan have found a way to use diffusion models to not only create a spectrogram image for a given prompt, but to do it with audio that actually makes sense given what the image shows. So for example if you asked for a spectrogram of a race car, you might get an audio track that sounds like a revving engine.

Continue reading “Feast Your Eyes On These AI-Generated Sounds”

Adafruit Badges Turned Electronic Invitations

Despite what you might have heard, even the most devout Hackaday readers may eventually find themselves getting married. Should you ever find yourself in a situation where you need to send out invitations for your big day, or any other major celebration for that matter, you could do worse than follow the example [Mokas] and their partner set with these memorable electronic wedding invitations.

Inspired by the electronic badges distributed at hacker cons, [Mokas] decided to use Adafruit’ EdgeBadge and PyBadge devices to create a similar interactive keepsake that would be a bit more exciting than a piece of paper. While it would have been enough to have the wedding information pop up on the screen when they were turned on, the final invites actually boot into a retro-style game where you walk around talking to characters to uncover information about the event and the venue.

The game was created in Microsoft MakeCode Arcade, with a sprinkling of original and commissioned sprites. Early versions of the game ended up being a bit much for the Adafruit badge’s to handle, but after doing a bit of research on creating games for computationally-constrained platforms, [Mokas] was able to optimize the performance. For those that didn’t get a physical invite (no doubt ours was simply lost in the mail), you can play the whole thing right in your browser.

It’s a very clever idea, and while using custom hardware would have allowed for a more bespoke package, we can’t blame [Mokas] for wanting to keep this one simple. Getting everything ready for your wedding is already enough stress — it’s hardly the time to spin up a new board.

For a similar reasons, another Adafruit offering was selected to power the couple’s e-ink baby development display.

Supercon 2023: Exploring The Elegance Of The Voja4

When you design an electronic badge, the goal is to make a device that’s interesting and has enough depth to keep your attendees engaged for the duration of the con but not so complicated that they can’t become proficient with it before they have to head home. It’s a difficult balance to nail down, and truth be told, not every Supercon badge has stuck the landing in this regard.

But if you’ve really done things right, you’ll create a piece of hardware that manages to outlive the event it was designed for. A badge that attendees continue to explore for months, and potentially even years, afterward. If the talk “Inside the Voja4” by Nathan Jones is any indication, we think it’s safe to say that goal was achieved with the Supercon 2022 badge.

During this forty-minute presentation, Nathan discusses what makes the 4-bit badge so fascinating from a technical standpoint and how it could theoretically be expanded to accomplish far more complex tasks than one might assume at first glance.

Continue reading “Supercon 2023: Exploring The Elegance Of The Voja4”

This WiFi Filament Sensor Is Unnecessary, But Awesome

As desktop 3D printers have inched towards something resembling the mainstream, manufacturers have upped their game across the board. Even the quality of filament that you can get today is far better than what was on the market in the olden days, back when a printer made out of laser-cut birch wasn’t an uncommon sight at the local makerspace. Now, even the cheap rolls are wound fairly well and are of a consistent diameter. For most folks, you just need to pick a well-reviewed brand, buy a roll, and get printing.

But as with everything else, there are exceptions. Some people are producing their own filaments, or want to make sure their extrusion rate is perfectly calibrated. For those that need the capability, the WInFiDEL from [Sasa Karanovic] can detect filament diameter in real-time while keeping the cost and complexity as low as possible. Even better, with both the hardware and software released as open source, it makes an excellent starting point for further development and customization.

Continue reading “This WiFi Filament Sensor Is Unnecessary, But Awesome”

Students’ Leaf Blower Suppressor To Hit Retail

Electric leaf blowers are already far quieter than their gas-powered peers, but they still aren’t the kind of thing you’d like to hear first-thing on a Saturday morning. Looking to improve on the situation, a group of students from Johns Hopkins University have successfully designed a 3D printed add-on that manages to significantly reduce the noise generated by a modern electric leaf blower without compromising the amount of air it’s able to move. The device has proven to be so successful in tests that Stanley Black & Decker is looking to put a commercial version of the device on store shelves within the next two years.

The team says the first part of the problem was identifying where the noise was actually coming from. After taking an example leaf blower apart and studying all of its moving components, they determined that most of the noise produced wasn’t mechanical at all — what you’re actually hearing is the complex cacophony of high-speed air rushing out of the nozzle. With this knowledge in hand, they isolated the frequencies which were the harshest to the human ear and focused on canceling them out.

Continue reading “Students’ Leaf Blower Suppressor To Hit Retail”

Printable Keycaps Keep The AlphaSmart NEO Kicking

Today schools hand out Chromebooks like they’re candy, but in the early 1990s, the idea of giving each student a laptop was laughable unless your zip code happened to be 90210. That said, there was an obvious advantage to giving students electronic devices to write with, especially if the resulting text could be easily uploaded to the teacher’s computer for grading. Seeing an opportunity, a couple ex-Apple engineers created the AlphaSmart line of portable word processors.

The devices were popular enough in schools that they remained in production until 2013, and since then, they’ve gained a sort of cult following by writers who value their incredible battery life, quality keyboard, and distraction-free nature. But keeping these old machines running with limited spare parts can be difficult, so earlier this year a challenge had been put out by the community to develop 3D printable replacement keys for the AlphaSmart — a challenge which [Adam Kemp] and his son [Sam] have now answered.

In an article published on KBD.news, [Sam] documents the duo’s efforts to design the Creative Commons licensed keycaps for the popular Neo variant of the AlphaSmart. Those who’ve created printable replacement parts probably already know the gist of the write-up, but for the uninitiated, it boils down to measuring, measuring, and measuring some more.

Things were made more complicated by the fact that the keyboard on the AlphaSmart Neo uses seven distinct types of keys, each of which took their own fine tuning and tweaking to get right. The task ended up being a good candidate for parametric design, where a model can be modified by changing the variables that determine its shape and size. This was better than having to start from scratch for each key type, but the trade-off is that getting a parametric model working properly takes additional upfront effort.

A further complication was that, instead of using something relatively easy to print like the interface on an MX-style keycap, the AlphaSmart Neo keys snap onto scissor switches. This meant producing them with fused deposition modeling (FDM) was out of the question. The only way to produce such an intricate design at home was to use a resin MSLA printer. While the cost of these machines has come down considerably over the last couple of years, they’re still less than ideal for creating functional parts. [Sam] says getting their keycaps to work reliably on your own printer is likely going to involve some experimentation with different resins and curing times.

[Adam] tells us he originally saw the call for printable AlphaSmart keycaps here on Hackaday, and as we’re personally big fans of the Neo around these parts, we’re glad they took the project on. Their efforts may well help keep a few of these unique gadgets out of the landfill, and that’s always a win in our book.