The Most Personalized Font Is Your Own Handwriting

When making a personal website, one will naturally include a personal touch. What could be more personal than creating a font from your own handwriting? That’s what [Chris Smith] has done, and it looks great on his blog, which also has a post summarizing the process.

Like most of us [Chris] tried to use open-source toolkits first, but the workflow (and thus the result) was a bit wanting. Still, he details what it takes to create a font in Inkscape or Font Forge if anyone else wants to give it a try. Instead he ended up using a web app called Calligraphr designed for this exact use case.

Above is hand written; below is the font. Aside from the lighting the difference isn’t obvious.

Fair warning: the tool is closed-source and he needed to pay to get all the features he wanted — specifically ligatures, glyphs made from two joined letters. By adding ligatures his personalized font gets a little bit of variation, as the ‘l’ in an ‘lf’ ligature (for example) need not be identical to the stand-alone ‘l’. In a case of “you get what you pay for” the process worked great and to the credit of the folks at Calligraphr, while it is Software-As-Service they offer a one-time payment for one month’s use of the “pro” features. While nobody likes SaS, that’s a much more user-friendly way to do it — or perhaps “least-user-hostile”.

All [Chris] had to do was write out and scan a few sheets that you can see above, while the software handled most of the hard work automagically. [Chris] only had to apply a few tweaks to get the result you see here. Aside from websites, we could see a personalized font like this being a nice touch to laser cut, CNC or even 3D printed projects. If you don’t want a personalized touch, the “Gorton” lettering of retro machinery might be more to your liking.

The Decisioninator Decides Dinner, Saves Marriage

For something non-explosive, this might be the most American project we’ve featured in a while. [Makerinator]’s domestic bliss was apparently threatened by the question “what shall we have for dinner”– that’s probably pretty universal. Deciding that the solution was automation is probably universal to software devs and associated personalities the world over. That the project, aptly called “The Decisioninator” apes a popular game-show mechanic to randomly select a fast-food restaurant? Only people with 100-octanes of freedom running through their veins can truly appreciate its genius.

In form factor, it’s a tiny slot machine which [Makerinator] fabbed up on his laser cutter. The lovely “paintjob” was actually a print out with dye-sublimation ink that was transferred to plywood before laser cutting.  Mounted to this are illuminated arcade buttons and a small ISP display. The interface is simplicity itself: the big button spins a virtual “wheel” on the display (with sound effects inspired by The Price is Right) to tell the family what deliciously unhealthy slop they’ll be consuming, while the other button changes decision modes. Of course you can pick more than just dinner with The Decisioninator. You need only decide what spinners to program. Which, uh, that might be a problem.

Luckily [Makerinator] was able to come up with a few modes without recursively creating a The Decisioninator-inator. He’s got the whole thing running on a Pi4, which, with its 1980s supercomputer performance, is hilariously overpowered for the role it plays (in true American fashion). He’s coded the whole thing in the Flame Engine, which is a game engine built on the Flutter UI toolkit by American technology giant Google.

What’s more American than tech giants and fast food? A propane powered plasma cannon, for one thing; or maybe mental gymnastics to translate into freedom units, for another.

Thanks to [Makerinator] for the tip.

Figure 7-8, caption: Example thrust sheet rotation using tether control. Credit: NASA/James Bickford.

TFINER Is An Atompunk Solar Sail Lookalike

It’s not every day we hear of a new space propulsion method. Even rarer to hear of one that actually seems halfway practical. Yet that’s what we have in the case of TFINER, a proposal by [James A. Bickford] we found summarized on Centauri Dreams by [Paul Gilster] .

TFINER stands for Thin-Film Nuclear Engine Rocket Engine, and it’s a hoot.  The word “rocket” is in the name, so you know there’s got to be some reaction mass, but this thing looks more like a solar sail. The secret is that the “sail” is the rocket: as the name implies, it hosts a thin film of nuclear materialwhose decay products provide the reaction mass. (In the Phase I study for NASA’s Innovative Advanced Concepts office (NIAC), it’s alpha particles from Thorium-228 or Radium-228.) Alpha particles go pretty quick (about 5% c for these isotopes), so the ISP on this thing is amazing. (1.81 million seconds!) Continue reading “TFINER Is An Atompunk Solar Sail Lookalike”

One Camera Mule To Rule Them All

A mule isn’t just a four-legged hybrid created of a union betwixt Donkey and Horse; in our circles, it’s much more likely to mean a testbed device you hang various bits of hardware off in order to evaluate. [Jenny List]’s 7″ touchscreen camera enclosure is just such a mule.

In this case, the hardware to be evaluated is camera modules– she’s starting out with the official RPi HQ camera, but the modular nature of the construction means it’s easy to swap modules for evaluation. The camera modules live on 3D printed front plates held to the similarly-printed body with self-tapping screws.

Any Pi will do, though depending on the camera module you may need one of the newer versions. [Jenny] has got Pi4 inside, which ought to handle anything. For control and preview, [Jenny] is using an old first-gen 7″ touchscreen from the Raspberry Pi foundation. Those were nice little screens back in the day, and they still serve well now.

There’s no provision for a battery because [Jenny] doesn’t need one– this isn’t a working camera, after all, it’s just a test mule for the sensors. Having it tethered to a wall wart or power bank is no problem in this application. All files are on GitHub under a CC4.0 license– not just STLs, either, proper CAD files that you can actually make your own. (SCAD files in this case, but who doesn’t love OpenSCAD?) That means if you love the look of this thing and want to squeeze in a battery or add a tripod mount, you can! It’s no shock that our own [Jenny List] would follow best-practice for open source hardware, but it’s so few people do that it’s worth calling out when we see it.

Thanks to [Jenny] for the tip, and don’t forget that the tip line is open to everyone, and everyone is equally welcome to toot their own horn.

Screenshot of Lazarus IDE on MacOS Ventura

The Case For Pascal, 55 Years On

The first version of Pascal was released by the prolific [Niklaus Wirth] back in 1970. That’s 55 years ago, an eternity in the world of computing. Does anyone still use Pascal in 2025? Quite a few people as it turns out, and [Huw Collingbourne] makes the case why you might want to be one of them in a video embedded below.

In all fairness, when [Huw] says “Pascal” he isn’t isn’t talking about the tiny language [Wirth] wrote back when the Apollo Program was a going concern. He’s talking about Object Pascal, as either Free Pascal or Delphi– which he points out are regularly the tenth most popular of all programming languages. (Index.dev claims that it has climbed up to number nine this year, just behind Go.) As a professional move, it might not be the most obvious niche but it might not be career suicide either. That’s not his whole argument, but it’s required to address the criticism that “nobody uses Pascal anymore”.

Pascal, quite simply, can make you a better programmer. That, as [Huw] points out, was an explicit goal of the language. Before Python took over the education world, two generations of high school students learned Pascal. Pascal’s strong typing and strict rules for declaration taught those kids good habits that hopefully carried over to other languages. It might help you, too.

For experienced programmers, Pascal is still a reasonable choice for cross-platform development. Free Pascal (and the Lazarus IDE) brings the graphical, drag-and-drop ease that once made Delphi rule the Windows roost to any modern platform. (And Delphi, a commercial Pascal product, is apparently still around.) Free Pascal lets you code on Linux or Mac, and deploy on Windows, or vice-versa. While you could do that on Python, Pascal gets you a lot closer to the metal than Python ever could.

Sure, it’s a modern object-oriented language now, with objects and classes and hierarchies and all that jazz– but you don’t always have to use them. If you want to go low-level and write your Pascal like it’s 1985, you can. It’s like being able to switch into C and manipulate pointers whenever you want.

On some level, perhaps the answer to the question “Why use Pascal in 2025” is simply– why not? It’s likely that the language can do what you want, if you take the time to learn how. You can even use it on an Arduino if you so wish– or go bare metal on the Raspberry Pi.

Thanks to [Stephen Walters] for the tip.

Continue reading “The Case For Pascal, 55 Years On”

Phonenstien Flips Broken Samsung Into QWERTY Slider

The phone ecosystem these days is horribly boring compared to the innovation of a couple decades back. Your options include flat rectangles, and flat rectangles that fold in half and then break. [Marcin Plaza] wanted to think outside the slab, without reinventing the wheel. In an inspired bout of hacking, he flipped a broken Samsung zFlip 5 into a “new” phone.

There’s really nothing new in it; the guts all come from the donor phone. That screen? It’s the front screen that was on the top half of the zFlip, as you might have guessed from the cameras. Normally that screen is only used for notifications, but with the Samsung’s fancy folding OLED dead as Disco that needed to change. Luckily for [Marcin] Samsung has an app called Good Lock that already takes care of that. A little digging about in the menus is all it takes to get a launcher and apps on the small screen.

Because this is a modern phone, the whole thing is glued together, but that’s not important since [Marcin] is only keeping the screen and internals from the Samsung. The new case with its chunky four-bar linkage is a custom design fabbed out in CNC’d aluminum. (After a number of 3D Printed prototypes, of course. Rapid prototyping FTW!)

The bottom half of the slider contains a Blackberry Q10 keyboard, along with a battery and Magsafe connector. The Q10 keyboard is connected to a custom flex PCB with an Arduino Micro Pro that is moonlighting as a Human Input Device. Sure, that means the phone’s USB port is used by the keyboard, but this unit has wireless charging,so that’s not a great sacrifice. We particularly like the use of magnets to create a satisfying “snap” when the slider opens and closes.

Unfortunately, as much as we might love this concept, [Marcin] doesn’t feel the design is solid enough to share the files. While that’s disappointing, we can certainly relate to his desire to change it up in an era of endless flat rectangles.  This project is a lot more work than just turning a broken phone into a server, but it also seems like a lot more fun.

Continue reading “Phonenstien Flips Broken Samsung Into QWERTY Slider”

Tiny Datasette Uses USB For The Modern Day

While you can still find tape being used for backup storage, it’s pretty safe to say that the humble audio cassette is about as out of date as a media format can be. Still, it has a certain retro charm we’re suckers for, particularly in the shape of a Commodore Datasette. We’re also suckers for miniaturization, so how could we not fall for [bitluni] ‘s tiny datasette replica?

Aesthetically, he’s copying the Commodore original to get those sweet nostalgia juices flowing, but to make things more interesting he’s not using compact cassette tapes. Instead, [bitluni] started with a micro cassette dictaphone, which he tore down to its essentials and rebuilt into the Commodore-shaped case.

The prototyping of this project was full of hacks — like building a resistor ladder DAC in an unpopulated part of a spare PCB from an unrelated project. The DAC is of course key to getting data onto the micro cassettes. After some playing around [bitluni] decided that encoding data with FSK (frequency-shift keying), as was done back on the C-64, was the way to go. (Almost like those old engineers knew what they were doing!) The dictaphone tape transport is inferior to the old Datasette, though, so as a cheap error-correction hack, [bitluni] needed to duplicate each byte to make sure it gets read correctly.

The micro cassettes only fit a laughable amount of data by modern standards this way (about 1 MB) but, of course that’s not the point. If you jump to 11:33 in the video embedded below, you can see the point: the shout of triumph when loading PacMan (all 8 kB of it) from tape via USB. That transfer was via serial console; eventually [bitluni] intends to turn this into the world’s least-practical mass storage device, but that wasn’t necessary for proof-of-concept. The code for what’s shown is available on GitHub.

If you have an old Datasette you want to use with a modern PC, you’d better believe that we’ve got you covered. We’ve seen other cassette-mass-storage interfaces over the years, too. It might be a dead medium, but there’s just something about “sticky tape and rust” that lives on in our imaginations.

Continue reading “Tiny Datasette Uses USB For The Modern Day”