DIY X-Rays Made Easy

Who doesn’t want an X-ray machine? But you need a special tube and super high voltage, right? [Project 326] says no, and produces a USB-powered device that uses a tube you can pick up two for a dollar. You might guess the machine doesn’t generate X-rays with a lot of energy, and you’d be right. But you can make up for it with long exposure times. Check out the video below, with host [Posh Arthur].

The video admits there are limitations, of course. We were somewhat sad that [Project 326] elected not to share the exact parts list and 3D printed files because in the unlikely event someone managed to hurt themselves with it, there could be a hysterical reaction. We agreed, though, that if you are smart enough to handle this, you’ll be smart enough to figure out how to duplicate it — it doesn’t look that hard, and there are plenty of not-so-subtle clues in the video.

Continue reading “DIY X-Rays Made Easy”

Double Your Printing Fun With Dual-Light 3D Printing

Using light to 3D print liquid resins is hardly a new idea. But researchers at the University of Texas at Austin want to double down on the idea. Specifically, they use a resin with different physical properties when cured using different wavelengths of light.

Natural constructions like bone and cartilage inspired the researchers. With violet light, the resin cures into a rubbery material. However, ultraviolet light produces a rigid cured material. Many of their test prints are bio-analogs, unsurprisingly.

Continue reading “Double Your Printing Fun With Dual-Light 3D Printing”

Embedded USB Debug For Snapdragon

According to [Casey Connolly], Qualcomm’s release of how to interact with their embedded USB debugging (EUD) is a big deal. If you haven’t heard of it, nearly all Qualcomm SoCs made since 2018 have a built-in debugger that connects to the onboard USB port. The details vary by chip, but you write to some registers and start up the USB phy. This gives you an oddball USB interface that looks like a seven-port hub with a single device “EUD control interface.”

So what do you do with that? You send a few USB commands, and you’ll get a second device. This one connects to an SWD interface. Of course, we have plenty of tools to debug using SWD.

Continue reading “Embedded USB Debug For Snapdragon”

Voltage Divider? Filter? It’s Both!

When we do textbook analysis, we tend to ignore the real-world concerns for the sake of learning. So, a typical theoretical voltage divider is simply two resistors. But if you examine a low-pass RC filter, you’ll see a single resistor and a capacitor. What if you combine them? That’s what [Old Hack EE] did in a recent video, and you can check it out below.

It helps if you are familiar with Thevenin equivalents and, of course, Ohm’s Law. There’s also a bit of algebra, but nothing too complicated. The example design has a lossy filter at 100 Hz.

Of course, RC filters are easy to understand if you think of them as voltage dividers with a frequency-variable resistance, which is what the math is basically saying. The load impedance, in this case, is R2 in parallel with Xc at a given frequency.

He mentions that you might find a circuit like this in a power supply. However, it is also common to see this circuit wherever a divider drives a load with capacitance or even parasitic capacitance in cables or circuit boards.

We’ve discussed Thevenin equivalence modeling before. If you want really good filters, you are probably going to need op-amps.

Continue reading “Voltage Divider? Filter? It’s Both!”

Ask Hackaday: Are You Wearing 3D Printed Shoes?

We love 3D printing. We’ll print brackets, brackets for brackets, and brackets to hold other brackets in place. Perhaps even a guilty-pleasure Benchy. But 3D printed shoes? That’s where we start to have questions.

Every few months, someone announces a new line of 3D-printed footwear. Do you really want your next pair of sneakers to come out of a nozzle? Most of the shoes are either limited editions or fail to become very popular.

First World Problem

You might be thinking, “Really? Is this a problem that 3D printing is uniquely situated to solve?” You might assume that this is just some funny designs on some of the 3D model download sites. But no. Adidas, Nike, and Puma have shoes that are at least partially 3D printed. We have to ask why.

We are pretty happy with our shoes just the way that they are. But we will admit, if you insist on getting a perfect fitting shoe, maybe having a scan of your foot and a custom or semi-custom shoe printed is a good idea. Zellerfield lets you scan your feet with your phone, for example. [Stefan] at CNC Kitchen had a look at those in a recent video. The company is also in many partnerships, so when you hear that Hugo Boss, Mallet London, and Sean Watherspoon have a 3D-printed shoe, it might actually be their design from Zellerfield.

Continue reading “Ask Hackaday: Are You Wearing 3D Printed Shoes?”

No Tension For Tensors?

We always enjoy [FloatHeadPhysics] explaining any math or physics topic. We don’t know if he’s acting or not, but he seems genuinely excited about every topic he covers, and it is infectious. He also has entertaining imaginary conversations with people like Feynman and Einstein. His recent video on tensors begins by showing the vector form of Ohm’s law, making it even more interesting. Check out the video below.

If you ever thought you could use fewer numbers for many tensor calculations, [FloatHeadPhysics] had the same idea. Luckily, imaginary Feynman explains why this isn’t right, and the answer shows the basic nature of why people use tensors.

Continue reading “No Tension For Tensors?”

Kids Vs Computers: Chisanbop Remembered

If you are a certain age, you probably remember the ads and publicity around Chisanbop — the supposed ancient art of Korean finger math. Was it Korean? Sort of. Was it faster than a calculator? Sort of. [Chris Staecker] offers a great look at Chisanbop, not just how to do it, but also how it became such a significant cultural phenomenon. Take a look at the video below. Long, but worth it.

Technically, the idea is fairly simple. Your right-hand thumb is worth 5, and each finger is worth 1. So to identify 8, you hold down your thumb and the first three digits. The left hand has the same arrangement, but everything is worth ten times the right hand, so the thumb is 50, and each digit is worth 10.

With a little work, it is easy to count and add using this method. Subtraction is just the reverse. As you might expect, multiplication is just repeated addition. But the real story here isn’t how to do Chisanbop. It is more the story of how a Korean immigrant’s system went viral decades before the advent of social media.

You can argue that this is a shortcut that hurts math understanding. Or, you could argue the reverse. However, the truth is that this was around the time the calculator became widely available. Math education would shift from focusing on getting the right answer to understanding the underlying concepts. In a world where adding ten 6-digit numbers is easy with a $5 device, being able to do it with your fingers isn’t necessarily a valuable skill.

If you enjoy unconventional math methods, you may appreciate peasant multiplication.

Continue reading “Kids Vs Computers: Chisanbop Remembered”