Got Junk? Then Build This Scrappy TEA Laser

A piece of glass, some bits of tinfoil, a sheet of plastic, a couple of razor blades, and a few assorted bits and bobs are all it takes to build this TEA nitrogen laser. Oh, and a 5,000-volt flyback supply with enough amperage to stop your heart. You’ll need that too.

Seriously, if you choose to follow [MultiverseCurator] ‘s example and build this laser, you’ll want to take the proper precautions. A transversely excited atmospheric laser is simple in concept, but there are plenty of ways for them to go wrong. Unlike the gas lasers used in laser cutters, there’s no enclosed resonator cavity or mirrors. Rather, the excitation takes place across a narrow gap between two electrodes, using atmospheric nitrogen as the lasing medium. This results in hard UV emissions, which means you can’t see them with the naked eye. Add to that the spark gap creating extremely loud discharges as the laser operates, and hazards abound. Proceed with caution.

Construction starts with a flat glass plate and a pair of large capacitors made from aluminum foil plates separated by a plastic dielectric. The razor blades are connected across the capacitors, separated by a narrow gap, with an inductor made from magnet wire in parallel. A spark gap made from nuts and bolts goes in series, and the whole assembly gets connected to a high-voltage power supply — [Multiverse] used a ZVS driver and a CRT flyback transformer with an eight-megohm resistor in series. The video below has all the build details.

It’ll take a little fiddling to get it lasing, and you’ll need something phosphorescent to see the UV light — a scrap of copy paper should do. But the results are pretty amazing for something made from scrap. If you want to take the design to the next level, you’ll want to check out [Les Wright]’s TEA laser build.

Continue reading “Got Junk? Then Build This Scrappy TEA Laser”

Linux Fu: Use The Source (Command), Luke

You can argue if bash is a good programming language or not, but you can’t argue that it is a programming language. However, there are a few oddities about it that make it different from most other languages you probably know. For one thing, variables are dynamically scoped. Second, you can easily change variables in an upper scope. This leads to a problem when you want to do something like reset your path:

#!/bin/bash
#: This does NOT work
PATH=/usr/bin:/bin

Well, actually, it does work; it just doesn’t work the way you imagine it might. The key is to realize that when you execute our script (say, resetpath), a new copy of bash runs. It inherits all the variables from your shell. Now the script sets PATH for the new copy of bash. Anything else you run in that script will see your change. But when the script exits, the new copy of bash is gone and the old copy sees the same old PATH it always did.

Continue reading “Linux Fu: Use The Source (Command), Luke”

Hacking A Rotary Phone

[Yaymukund] made an interesting observation. Old-style rotary phones were made to last and made for service. Why? Because you didn’t own them, the phone company did. There was no advantage for them for you to need a service call or a new phone. Of course, many of these old phones are still hanging around like the GPO 746 that appears in the post.

What do you do with an old rotary phone? In this case, you make it play a random tune whenever someone picks up the handset. As you might expect, you don’t need much of the original phone to do this. In particular, you need the handset receiver and the switch hook. We’d have liked to read the dial to select a tune, but perhaps that could be in version two.

All the components wire back to a D92732 circuit board. Finding the right wires was a bit finicky, but eventually, a Teensy, a battery pack, and an audio breakout board were in place. The rest is mostly trivial.

[Yaymukund] spent about £300, but over half of that was on tools most Hackaday readers will already have. The phone itself was £65. You can use these phones as a basis for many projects. Even if you want to go mobile.

Hackaday Europe 2025: Speaker Schedule And Official Event Page

Hackaday Europe 2025 is just days away, and we’ve got the finalized speaker schedule hot off the digital press. We’re also pleased to announce that the event page is now officially live, where you can find all the vital information about the weekend’s festivities in one place.

Whether you’ll be joining the fun in Berlin, or watching the live stream from home, we’ve got a fantastic lineup of speakers this year who are eager to tell us all about the projects that have been keeping them up at night recently:

Continue reading “Hackaday Europe 2025: Speaker Schedule And Official Event Page”

High-Speed Reservoir Computing With Integrated Laser Graded Artificial Neurons

So-called neuromorphic computing involves the use of physical artificial neurons to do computing in a way that is inspired by the human brain. With photonic neuromorphic computing these artificial neurons generally use laser sources and structures such as micro-ring resonators and resonant tunneling diodes to inject photons and modulate them akin to biological neurons.

General reservoir computing with laser graded neuron. (Credit: Yikun Nie et al., 2024, Optica)

One limitation of photonic artificial neurons was that these have a binary response and a refractory period, making them unlike the more versatile graded neurons. This has now been addressed by [Yikun Nie] et al. with their research published in Optica.

The main advantage of graded neurons is that they are capable of analog graded responses, combined with no refractory period in which the neuron is unresponsive. For the photonic version, a quantum dot (QD) based gain section was constructed, with the input pulses determining the (analog) output.

Multiple of these neurons were then combined on a single die, for use in a reservoir computing configuration. This was used with a range of tests, including arrhythmia detection (98% accuracy) and handwriting classification (92% accuracy). By having the lasers integrated and the input pulses being electrical in nature, this should make it quite low-power, as well as fast, featuring 100 GHz QD lasers.

A Decade Resistance Box From PCBs

One of those useful things to have around on your bench is a decade resistance box, essentially a dial-a-resistance instrument. They used to be quite expensive in line with the cost of close-tolerance resistors, but the prices have come down and it’s within reach to build your own. Electronic design consultancy Dekimo have a nice design for one made from a series of PCBs which they normally give out at trade fairs, but now they’ve released the files for download.

It’s released as Gerbers and BOM with a pick-and-place file only, and there’s no licence so it’s free-as-in-beer [Editor’s note: the license has been updated to CC-BY-SA], but that should be enough if you fancy a go. Our Gerber viewer is playing up so we’re not entirely sure how reliable using PCBs as wafer switches will be long-term, but since the pictures are all ENIG boards we’d guess the gold plating will be much better than the HASL on all those cheap multimeters.

We like this as a conference giveaway, being used to badges it’s refreshing to see a passive take on a PCB artwork. Meanwhile this isn’t the first resistance box we’ve seen with unconventional switches.

Meshtastic Adds Wireless Connectivity To Possum Trap

Perhaps every gardener to attempt to grow a tomato, lettuce, or bean has had to contend with animals trying to enjoy the food before the gardener themselves can, whether it’s a groundhog, rabbit, mouse, crow, or even iguana. There are numerous ways to discourage these mischievous animals from foraging the garden beds including traps, but these devices have their downsides as well. False alarms can be a problem as well as trapping animals that will be overly aggravated to be inside the trap (like skunks) and while the latter problem can’t easily be solved by technology, the former can with the help of Meshtastic.

[Norman Jester]’s problem was an errant possum, but these nocturnal animals generally come out while humans are asleep, and other nighttime animals like rats can activate the trap and then escape. To help with this, a Meshtastic node was added to the San Diego mesh using a 3.5mm audio jack as a detector. When the trap is activated, the closing door yanks a plug out of the jack, alerting the node that the trap has been closed. If it’s a false alarm the trap can be easily and quickly reset, and if a possum has found its way in then it can be transported to a more suitable home the next day.

It’s worth noting that American possums (distinct from the Australian animals of the same name) are an often-misunderstood animal that generally do more good than harm. They help to control Lyme disease, eat a lot of waste that other animals won’t, don’t spread rabies, and don’t cause nearly as much disruption to human life as other animals like feral cats or raccoons. But if one is upsetting a garden or another type of animal is causing a disturbance, this Meshtastic solution does help solve some of the problems with live traps. For smaller animals, though, take a look at this Arudino-powered trap instead.

Thanks to [Dadsrcworkbench] for the tip!

Continue reading “Meshtastic Adds Wireless Connectivity To Possum Trap”