[Jeri] Spills The Beans On Her AR Glasses

AR

In the last year, [Jeri Ellsworth] has been very busy. She was hired by Valve, started development of an augmented reality system, fired by Valve, and started a new company with [Rick Johnson] to bring her augmented reality glasses to the market. On the last Amp Hour podcast she spilled the beans on what went down at Valve, how her glasses work, and what her plans for the future are.

[Jeri] and [Rick]’s castAR glasses aren’t virtual reality glasses like the Oculus Rift or other virtual reality glasses that cut you off from the real world. The castAR glasses preserve your peripheral vision by projecting images and objects onto a gray retro-reflective mat and allows you to interact with a virtual environment with an electronic wand. So far, there are a few demos for the castAR system; a Jenga clone, and a game of battle chess called Team For Chess, a wonderful reference to Valve’s hat simulator.

The electronics inside the castAR glasses are fairly impressive; new frames are drawn on the retro-reflective surface at 100 Hz, positioning accuracy is in the sub-millimeter range, and thanks to [Jeri]’s clever engineering the entire system should be priced at about $200. Not too bad for an awesome device that can be used not only for D&D and Warhammer, but also for some very cool practical applications like visualizing engineering models of 3D prints before they’re printed.

[Jeri] Uses Light Bulbs In An Oscillator

Way back when [Ms Ellsworth] was a kid, she kept seeing the same circuit over and over again in her various op-amp books. It was a Wien bridge oscillator, a small circuit that outputs a sine wave with the help of a light bulb. Now that [Jeri] is much wiser, she decided to play around with this strange oscillator and found it’s actually pretty impressive for, you know, a light bulb.

The interesting portion of the Wien bridge is the gain portion of the circuit. It’s just a simple resistor divider, with a light bulb thrown in on one of its legs. When the current increases, this causes the light bulb to warm up (not enough to glow, though). When the temperature increases, the resistance in the light bulb increases, making the oscillator reach an equilibrium.

It’s a clever setup, but what about swapping out a resistor in place of the light bulb? In the video, [Jeri] tries just that, and it’s a mess. Where the light bulb circuit is amazingly stable with very, very low distortion, the resistor circuit looks like a disaster on the scope with harmonics everywhere.

A very cool build that would be perfect for an audio synth, but as [Jeri] says in her YouTube comments, “This doesn’t have enough distortion for indie bands.”

Continue reading “[Jeri] Uses Light Bulbs In An Oscillator”

[Jeri] Builds A C64 Bass Keytar

[Jeri] built this really cool C64 bass Keytar from a commodore64 and a cheap bass guitar. She’s using an FPGA to do the string detection and the key scanning, it then sends everything to the original 8bit sound chips. The reason that she is using a bass guitar is that the commodore sound chip only has 3 channels. There’s an interview with her from the maker faire, and if you keep watching, there are some other interesting projects too.

She notes that the implementation she went with has many performance issues due to the overtones the strings create when played. If she did it again, she’d go another route. Since [Jeri] has previously created the fully functional C64 games on FPGA, maybe she’ll add some video synth to this down the road.

Pick Up That Can, [Jeri]

We all need an excuse to play Half-Life 2 sometimes. [Jeri Ellsworth] put together a My First Crowbar controller to throw a few headcrabs across the room. It’s pretty much Half-Life 2 for the Wii.

The build is very simple – just a tilt switch hot glued to the underside of a childs-size crowbar. Two leads go from the tilt switch to the contacts on a (PS3?) controller. All you need to do to attack is swing the crowbar wildly.

[Jeri] has us wondering what other awesome game controllers could be made. Of course we’ve been wanting a real-life Gravity Gun or Portal Gun for years now, but right now we’re thinking about a real Katamari. We might need more hot glue.

As far as building our own, we’re thinking about using one of the Cheap DIY tilt switches we saw the other day. It’s a simple build, and sure looks like a lot of fun.

Continue reading “Pick Up That Can, [Jeri]”

Jeri Getting Her Own Show?

[Jeri Ellsworth] has been very excited about this new opportunity. She sent us a “pilot video“, so we’re assuming that there will be more to come.  In the pilot, she explains how to build a musical art installation that will play music when a viewer is in position. She covers several different ways to detect the presence of the person, ultimately landing on using a PIR sensor for detection. We can’t wait to see where this show goes, but we hope she continues to do her own hacking videos as well.

Jeri Makes Flexible EL Displays

A failed chemistry experiment led [Jeri Ellsworth] to discover a flexible substrate for electroluminescent displays. We’re familiar with EL displays on the back of a glass panel like you would find in an audio receiver, but after making a mesh from aluminum foil [Jeri] looked at using the porous metal to host phosphors. She starts by cleaning foil and using a vinyl sticker to resist etching portions of the aluminum. It then goes into a bath of boric acid, electrified with the foil as the anode. As the foil etches she tests the progress by shining a laser through the foil. After this the phosphors are applied to the back surface of the foil, covered in a dielectric, and topped off with a conductive ink that will carry the AC necessary to excite the phosphors. This is layering materials in reverse compared to her EL PCB experiments. See [Jeri] explain this herself in the clip after the break.

You can see above that this produces a pretty well-defined display area. It reminds us of that color changing paint display. We think it would be worth a try to build a few 7-segment displays using this method.

Continue reading “Jeri Makes Flexible EL Displays”

Jeri Makes Integrated Circuits

[Jeri Ellsworth] made this silicon inverter at home, by hand. It took her two years to get the process figured out and achieve something we didn’t think was possible. The complexity of manufacture, and the wide range of tools and materials needed seem insurmountable but she did it anyway. Her home chip fab Flickr set is well commented and details her work area and part of the processing. If you’re hurting for more check out her 40 minute Metalab talk which we’ve embedded after the break.

If her name sounds familiar but you just can’t place it you may know her from The Fatman and Circuit Girl. We’ve also featured some of her hacks, such as her Pinball challenge against [Ben Heckendorn], and her giant Etch-a-Sketch.

Continue reading “Jeri Makes Integrated Circuits”