A Better Spectrum Analyzer For Your Rigol Scope

The Rigol DS1000 series of oscilloscopes are popular with hobbyists for good reason: they provide decent specs at a low price. However, their spectrum analysis abilities are lacking. While these scopes do have a Fast Fourier Transform (FFT) function, it’s limited and nearly useless for RF.

A FFT plotted by the PyDSA tool and a Rigol oscilloscope[Rich] wanted a spectrum analyzer for amateur radio purposes, but didn’t want to build his own sampling hardware for it. Instead, he wrote PyDSA, a software spectrum analyzer for Rigol DS1000 oscilloscopes. This tool uses the USB connection on the scope to fetch samples, and does the number crunching on a far more powerful PC. It’s able to plot a 16,000 point FFT at two sweeps per second when run on a decent computer.

PyDSA is a Python script that makes use of the Virtual Instrument Software Architecture (VISA) interface to control the scope and fetch the sample data. Fortunately there’s some Python libraries that take care of the protocol.

[Rich] is now able to use his scope to measure amateur radio signals, which makes a nice companion to his existing Teensy based SDR project. If you have a Rigol, you can grab the source on Github and try it out.

Controlling A Rigol With Linux

The Rigol DS1052E is the de facto oscilloscope for any tinkerer’s bench. It’s cheap, it’s good enough, and it’s been around for a long time; with the new 1054 zed model out now, you might even be able to pick up a 1052E on the cheap.

[wd5gnr1] came up with a really interesting piece of software that allows a Linux system to control most of the functions on this popular scope. With just a USB cable, you can read and log all the measurement of the scope, save waveforms in CSV format, and send data to gnuplot and qtiplot.

Since the 1052E has been around for such a long time, there’s a bunch of software out there that takes advantage of the nifty USB port on the front of this scope. If you need a cheap spectrum analyzer, here ‘ya go, and tools for the .WFM files native to this scope even exist for Windows. [wd5gnr1] even says his tool can probably be ported to Windows, but ‘just use Linux.’

How To Get 50 More Zed From Your Rigol DS1054Z

[Chris] has been spending a lot of time in the wife’s sewing room lately, and things got pretty serious late last night as he hacked his shiny new Rigol DS1054Z to unlock the 1104Z capabilities lurking within.

The rumors are true, and ungoverning the software is as simple as looking up your serial number and knowing the right URL for generating a valid license. [Chris] ran into a dud site, but that’s the price of doing business in the shadowy parking garage basements of the interwebs. Once he knocked on the right door and uttered the secret word, however, he became the proud owner of 50MHz additional bandwidth, decoders for SPI, I²C, and RS-232, twice the storage depth, and all teh triggers that ship with the 1104Z.

Can’t rationalize the purchase even at the ridiculously low price point? Here’s one way to make it happen. You’ll laugh, you’ll cry, you’ll learn some French.

Continue reading “How To Get 50 More Zed From Your Rigol DS1054Z”

How To Reverse Engineer, Featuring The Rigol DS1054Z

For a few years now, the Rigol DS1052E has been the unofficial My First Oscilloscope™. It’s cheap, it’s good enough for most projects, and there have been a number hacks and mods for this very popular scope to give it twice as much bandwidth and other interesting tools. The 1052E is a bit long in the tooth and Rigol has just released the long-awaited update, the DS1054Z. It’s a four-channel scope, has a bigger screen, more bells and whistles, and only costs $50 more than the six-year-old 1052E. Basically, if you’re in the market for a cheap, usable oscilloscope, scratch the ~52E off your list and replace it with the ~54Z.

With four channels of input, [Dave Jones] was wondering how the engineers at Rigol managed to stuff two additional front ends into the scope while still meeting the magic price point of $400. This means it’s time for [Dave] to reverse engineer the 1054Z, and give everyone on the Internet a glimpse at how a real engineer tears apart the worth of other engineers.

The first thing [Dave] does once the board is out of the enclosure is taking a nice, clear, and in-focus picture of both sides of the board. These pictures are edited, turned into a line drawing, and printed out on a transparency sheet. This way, both sides of the board can be viewed at once, allowing for a few dry erase marker to highlight the traces and signals.

Unless your voyage on the sea of reverse engineering takes you to the island of despair and desoldering individual components, you’ll be measuring the values of individual components in circuit. For this, you’ll want a low-voltage ohms function on your meter; if you’re putting too much voltage through a component, you’ll probably turn on some silicon in the circuit, and your measurements will be crap. Luckily, [Dave] shows a way to test if your meter will work for this kind of work; you’ll need another meter.

From there, it’s basically looking at datasheets and drawing a schematic of the circuit; inputs go at the left, outputs at the right, ground is at the bottom, and positive rails are at the top. It’s harder than it sounds – most of [Dave]’s expertise in this area is just pattern recognition. It’s one thing to reverse engineer a circuit through brute force, but knowing the why and how of how the circuit works makes things much easier.

Continue reading “How To Reverse Engineer, Featuring The Rigol DS1054Z”

A Keygen For The Rigol 2000-series Scopes

A few weeks ago it came to our attention that Rigol’s DS2000-series oscilloscopes were easily unlocked with a few USB commands. We had expected a small microcontroller device would be developed to send these bits to a scope automatically, and we never imagined the final version of this tool hack would be so elegant. Now it’s possible to unlock a DS2072 o’scope using just a serial number and a great encryption hack.

The engineers over a Rigol (bless their hearts) used the same hardware for the $800, 70MHz DS2072 and the $1600, 200MHz DS2202. The only difference between the two are a few bits in the scope’s memory that are easily unlocked if you have the right key. A few folks over on the EEV Blog forum figured out the private key for the scope’s encryption and the user [cybernet] wrote a keygen.

The upgrade process is extremely simple: get the serial number of your DS2072, put it in the keygen, and enter the resulting key into the scope. Reboot, and you have a $1600 scope you bought for half price.

Unlocking A Rigol Scope Once Again

Rigol scopes are finding their way onto the workbenches of makers the world over. There’s a reason for that – they’re so easily upgraded. With a simple software update, you can turn the 50 MHz Rigol o’scope into a model with 100 MHz of bandwidth. Design decisions in one model are sometimes carried over to different product lines, so eventually someone would figure out how to turn the 70 MHz DS2072 scope into the 200 MHz DS2202. A great mod that turns an $800 oscilloscope into one with the features of a $1600 scope.

There’s no internal modifications necessary for this mod; it works simply by sending a few engineering unlock codes to the scope over USB, a simple task that [Blair] implemented with a Raspberry Pi and a bit of Python code. The only fault of the hack is the scope resetting each time it’s powered off. This can, in fact, be accomplished with just about any microcontroller with a Python interpreter.

A fairly uninformative demo video is available below, or you could check out the EEVBlog thread where this mod was conceived here.

We here at Hackaday expect a small, cheap USB/microcontroller dongle thingy that automagically updates the DS2072 to show up in our inbox any day now. We thank whoever sends that in.

Continue reading “Unlocking A Rigol Scope Once Again”

Rigol DS1022C Hack Brings It Up To 100MHz Speed

rigol-1022c-100MHz-hack

[Andreas Schuler] has been playing around with his Rigol DS1022C digital storage oscilloscope. It’s an older model which can capture samples at up to 25MHz, but [Andreas] claims to have quadrupled that using a service menu hack. His technique changes the settings to use the DS1022C at 100Mhz.

Usually a hack like this includes some test measurements that confirm the hardware is actually sampling at the higher rate, and is not just claiming that it has the ability to do so. We’d love to hear from you in the comments if you’ve got this piece of bench hardware and decided to try it for yourself. His method enters in a sequence of buttons from the system info menu. If done correctly this will add a service menu option that wasn’t there before. A bit of navigation leads you to the screen seen above, where you can change the model number to DS1102C. This is the more robust 100MHz cousin of the 1022.

If you think you’ve seen this hack before it’s probably because the Rigol 1052E was previously pulled to 100MHz with a firmware hack.