What Can We Learn From A Cheap Induction Cooktop?

Sometimes tearing down a cheap appliance is more interesting that tearing down an expensive one. A lot of the best engineering happens when cost is an issue. You may not solve the problem well, but you can solve it well enough for a discount shelf.

[openschemes] purchased a 1.8kW induction hot plate at a low price off Amazon. The reasons for the discount soon became apparent. The worst of which was a fully intolerable amount of high frequency switching noise. Wanting to know how it worked, he took it apart.

After he had it apart on his desk, he deciphered the circuit, and wrote about it clearly. As usual with extremely cheap electronics, some clever hacks were employed. The single micro-controller was used for monitoring, and generated a PWM signal that was instantly converted to DC through some filters. All the switching was done the old fashioned way, which explained why the hotplate seemed so brainless to [openschemes] when he first turned it on.

Lastly, he did some work on manually controlling the cooktop for whatever reason. The good news? He managed to figure out how to control it. Unfortunately he also destroyed his unit in the process, via a misapplication of 1200 volts. A fitting end, and we learned a lot!

Thanks [David Balfour] for the tip!

Rope Braiding Machine Built Entirely From LEGO Technics

If you’ve ever seen a rope-braiding machine in action, you know they’re amazing machines where bobbins of thread whirl and spin in a complex dance to weave the threads under and over each other. Building one of these machines must be incredibly difficult; building one out of LEGO Technics pieces is darn near insane.

[Nico71], as hardcore a Technics builder as they come, tackled this complex build and made it work. A large drum spins horizontally and carries three groups of three planetary-mounted thread bobbins. The entire drum spins in one direction while the bobbins and another die with three holes spin the other way. The resulting braids are then fed through another spinning die, and the resulting 9-strand rope is taken up by a winding drum. The drum has a self-reversing feeding mechanism to keep the finished spool neat and tidy. The most impressive thing about the build, though, is the fact that it’s all powered by a single motor, and that everything is synchronized via gears, shafts, sprockets, chains and clutches. It’s a Technics tour de force you can see in action after the break.

[Nico71]’s build are pretty amazing. Some are pure art, others are models of classic cars and motorcycles, but things like his loom and the calculator he’s working on now are remarkable. Of course if you need to see more of the mesmerizing ballet of rope-braiding machines, check out this 16-bobbin hand-cranked version.

Continue reading “Rope Braiding Machine Built Entirely From LEGO Technics”

The OpenR/C Project

The Open RC Truggy that started it all.
The Open RC Truggy that started it all.

[Daniel Norée] started the OpenR/C project back in 2012 when he bought a Thing-O-Matic. In search of a project to test out his new printer, he set his sights on a remote controlled car, which as he put it,”… seemed like the perfect candidate, as it presents a lot of challenges with somewhat intricate moving parts along with the need for a certain level of precision and durability.

After releasing his second design, the OpenR/C Truggy, he realized a community was forming around this idea, and needed a place to communicate. So, he created a Google+ group. Today, the Truggy has been downloaded over 100,000 times and the Google group has over 5,000 members. It’s a very active community of RC and 3d printing enthusiasts who are testing the limits of what a 3d printer can do.

Continue reading “The OpenR/C Project”

Aquire Awesome Audio For BeagleBone

[Henrik Langer] put his powerful audio acquisition and output board up on Hackaday.io, and we thought we’d point it out to you. It’s one of those projects that used to be pro audio just a few years back, but is doable (and affordable) DIY today: dual stereo inputs and four(!) stereo outputs, all sampled at 24 bits and up to 192 kHz. It’s configured as a BeagleBone cape, and comes with a customized Linux distribution for the ‘Bone.

What would you do with such a thing? It’s essentially a recording studio in your pocket, with a computer attached. The video (linked below the break) demonstrates using the device as a real-time stereo delay effect unit, but that’s only making use of one channel. Between effects, recording, and then all sorts of much-better-than-CD quality sound synthesis and playback possibilities, it’s an open-ended audio playground.

And all that from what is essentially a (very well-done) breakout board for a fancy DAC/ADC chip from Analog Devices: the AD1938. We’d love to have one of these on our desktop. Check out [Henrik]’s GitHub for the PCB and build instructions and BOM and everything else you’d need to get started. Very nice job!

Continue reading “Aquire Awesome Audio For BeagleBone”

Variable Instruction Computing: What Is Old Is New Again

Every twenty to twenty-five years, trends and fads start reappearing. 2016 is shaping up to be a repeat of 1992; the X-files is back on the air, and a three-way presidential election is a possibility. Star Trek is coming back, again. Roll these observations back another twenty-five years, and you have The Outer LimitsStar Trek, and riots at the DNC convention in Chicago.

History repeating itself is not the exclusive domain of politics and popular culture. It happens with tech, too: the cloud is just an extension of thin clients which are an extension of time-sharing. Everything old is new again.

For the last few years, Soft Machines, a fabless semiconductor company running in stealth mode, released the first preview for an entirely new processor architecture. This new architecture, VISC, offers higher performance per Watt than anything available on the market. If you’ve been paying attention for the last decade or so, the future of computing isn’t 200-Watt space heaters that also double as powerful CPUs. The future is low power machines that are good enough to run Facebook or run some JavaScript. With servers, performance per Watt is possibly the most important metric. How will Soft Machines upend the semiconductor market with new processors and new architectures? If you know your history, it shouldn’t be a surprise.

Continue reading “Variable Instruction Computing: What Is Old Is New Again”

Adorable Matchbox Robot

[wattnotions] has been playing with matches, well the box they come in anyway. One day he was letting synapses fire unsupervised, and wondered if he could build a robot inside of a matchbox. His first prototype was a coin lithium battery and scrounged motors from those 3 US Dollar servos you can buy by the dozen. It scooted around just fine, but it drained the battery instantly and was a little boring.

Next, he etched a board. It had a little PIC micro, a connector for a mini LiPo, and an H bridge. It fired up just fine, and even though it drained the battery way too fast, at least it wasn’t brainless anymore. In our experience, robots tend to discard all the useful data they collect anyway, so being blind wasn’t too much of a problem.

Inspired and encouraged, with synapses gloriously undeterred, [wattnotions] set out to make a version 2. This time he ordered a board from OSHPark, made a 3D model in SketchUp, and proceeded to lock himself out from his own chip. Without a high voltage programmerhe was out of luck. The development was unfortunately put on hold.

It was fun to read along with [wattnotions] as he went on a small robot adventure. We hope he’ll complete a version 3 and have a swarm of the little fellows scooting around.

Continue reading “Adorable Matchbox Robot”

Mind-Controlled Prosthetic Arm

Losing a limb often means getting fitted for a prosthetic. Although there have been some scientific and engineering advances (compare a pirate’s peg leg to “blade runner” Oscar Pistorius’ legs), they still are just inert attachments to your body. Researchers at Johns Hopkins hope to change all that. In the Journal of Neural Engineering, they announced a proof of concept design that allowed a person to control prosthetic fingers using mind control.

Continue reading “Mind-Controlled Prosthetic Arm”