Hackaday Prize Entry: Wheelchair User Pressure Relief Indicator System

It is difficult to put yourself as an able-bodied person into the experiences of a person with a physical disability. Able-bodied people are quick with phrases such as “Confined to a wheelchair” with little idea of what that really means, and might be surprised to meet wheelchair users who would point out that far from being a prison their chair might, in fact, be their tool of liberation.

It is also difficult for an able-bodied person to understand some of the physical effects of using a wheelchair. In particular, some wheelchair users with paralysis can suffer from dangerous pressure sores without being aware of them due to their loss of feeling. Such people, therefore, have a regime of exercises designed to relieve the pressure that causes the sores, and these exercises must be completed as often as every half hour. They can be inconvenient and difficult to perform, so in an effort to help people in that position there is a Hackaday Prize entry that provides feedback on how effectively the exercise regime has been performed.

The project puts an array of force-sensitive resistors on the bed of the chair underneath its cushion and monitors them with an Arduino before giving a feedback to the user via a set of LEDs. So far they have created a first prototype, and are awaiting parts and recruiting users for testing a second.

It would be nice to think that this project would have a positive impact on the lives of the people it aims to help. It’s not the first time the Hackaday Prize has ventured into this field, as the 2015 winner demonstrates.

Hackaday Prize Entry: TooWheels, The Open Source Wheelchair

The Assistive Technology challenge of the Hackaday Prize received a large number of projects addressing many socially relevant problems. Mobility and transportation needs are a big challenge for those with limb disabilities. Not every country has proper, state-subsidised health care systems, and for many people in third world countries, devices such as wheel chairs are just not affordable. [Alessio Fabrizio] and his team developed TooWheels — an Open Source DIY wheelchair which can be customized and built using low-cost, local materials around the world and is one of the winners of the Assistive Technologies challenge round.

Originally conceived as a sport wheelchair, it has now evolved to answer different needs, due to feedback from the users and the community involved in the project. [Alessio] designed the project to be built from materials and resources easily available to any DIY maker at today’s Fab Labs and Makerspaces. The team have provided a detailed BOM to help procure all the required materials, instruction manual and drawings for assembly, and all the CAD files with customization instructions. Already, teams in Ecuador, India and Italy have replicated and built their own version of the TooWheel wheelchair. This confirms that the project is well documented and allows anyone around the world to download the plans and follow instructions to build their own wheelchair.

The wheelchair is built from CNC cut plywood sheets, aluminum pipes and bicycle parts and wheels. This makes it substantially cheaper compared to commercial wheelchairs, making it especially relevant for people in third world areas or where health care is not subsidised. The ease of customization allows fabrication of different wheelchair designs for sports, off-road or city use. The team is looking to bring this low-cost design to people around the world and are keen to collaborate with teams around the world to make it happen.

Simulating VR Obstacles with Wheelchair Brakes

[Joey Campbell] is studying for his PhD at the Bristol Interaction and Graphics Lab, focusing on the interplay between real and virtual objects within the realm of exergaming–“gamercising” where physical motion and effort drives the game. The goal is to make the physical effort seem to correspond with what’s seen on the headset.

[Joey] set up a test rig where an exercise bike’s gears were adjusted based on the terrain encountered, seeking to find out if that realism inspired a greater feeling of immersion. He also provided some test subjects a HUD with their heart rate and other stats, to see if that encouraged gamers to exercise more.

In his current project, [Joey] has equipped a wheelchair with a pair of Arduino-controlled servos that squeeze the brakes to simulate an obstacle. In the VR realm, a player pushes the wheelchair toward a virtual block and the brakes engage, requiring the player push harder to bypass the obstacle.

One imagines the possibilities of games designed for specifically for wheelchairs. The Eyedrivomatic wheelchair that won the 2015 Hackaday Prize sounds perfect for the job!

Continue reading “Simulating VR Obstacles with Wheelchair Brakes”

Air-Powered Wheelchair Goes Like The Wind

Electric wheelchairs are responsible for giving back independence to a great many people the world over. They do have their limitations, however, including long recharge times and a general aversion to large amounts of water. Being weatherproof is one thing, but taking one to a waterpark is another thing entirely. Fear not, for The University of Pittsburgh has the answer: the air-powered wheelchair.

Known as the PneuMobility project, the chair relies on a couple of compressed air tanks as a power source. They appear to be a of composite construction, which would cut down on weight significantly and help reduce risk of injury in the case of a failure. The air is passed through a system of valves to a special compressed air motor, allowing the user to control the direction of travel. Unfortunately details on the drive system are scant — we’d love to know more about the design of the drivetrain! Reportedly a lot of the components come from the local hardware store, though we haven’t seen a whole lot of compressed air drive motors on the racks of Home Depot/Bunnings/et al.

Range for the wheelchairs is listed as about 1/3 of an electric wheelchair but recharging compressed air takes minutes, not hours. Developed by the university’s Human Engineering Research Laboratories, the wheelchair isn’t just a one off. There are plans to supply ten of the machines to the Morgan’s Wonderland amusement park to enable wheelchair users to share in the fun of the water park.

We’ve seen some great wheelchair hacks in the past, too – like this chair built specifically for the sand dunes! Video after the break.

Continue reading “Air-Powered Wheelchair Goes Like The Wind”

Assistive Technology Pioneer Patrick Joyce Has Passed Away

We are once again saddened to report the loss of another great hacker. Patrick Joyce has passed away after a decade-long struggle with ALS/MND. Patrick was the team captain of Eyedriveomatic, the Grand Prize winning hardware from the 2015 Hackaday Prize. The loss of Patrick comes quickly after receiving word on Monday about the death of Patrick’s teammate, Steve Evans.

Despite the challenges Patrick faced in the final years of his life he was a prolific hardware hacker. He and his team won the Hackaday Prize in 2015 for designing a system which allowed electric wheelchairs to be controlled with eye gaze software without altering the chairs themselves (which are often not owned by the user). But he was also a finalist in the Assistive Technologies challenge of the 2016 Hackaday Prize. The Raimi’s Arm project set its goal at creating bionic arms for kids — a noble and worthy challenge for everyone to undertake. Check out Patrick’s profile page and you’ll see he has also built an open source head mouse (an alternative to eye gaze controls) and a headphone robot which allowed him to put on and take off his own headphones.

I find it amazing what he achieved in his work considering the physical limitations placed before him. Patrick had limited use of one hand which he used with a joystick for mouse control. His typing was done using eye gaze. Yet he managed to design and document a number of incredible creations. This is inspiring.

Reflect on this loss to our community, but take comfort in the fact that his work lives on. Cody Barnes, the software developer for the Eyedrivomatic, plans to continue work on the project. If you are interested in helping to make that open source assistive tech available to more people who need it, now is a great time to send a private message to Cody to learn more about getting involved.

Steve Evans Passes Away, Leaves an Inspiring Legacy

It is with great sadness that Hackaday learns of the passing of Steve Evans. He was one of the creators of Eyedrivomatic, the eye-controlled wheelchair project which was awarded the Grand Prize during the 2015 Hackaday Prize.

News of Steve’s passing was shared by his teammate Cody Barnes in a project update on Monday. For more than a decade Steve had been living with Motor Neurone Disease (MND). He slowly lost the function of his body, but his mind remained intact throughout. We are inspired that despite his struggles he chose to spend his time creating a better world. Above you can see him test-driving an Eyedrivomatic prototype which is the blue 3D printed attachment seen on the arm of his chair.

The Eyedrivomatic is a hardware adapter for electric wheelchairs which bridges the physical controls of the chair with the eye-controlled computer used by people living with ALS/MND and in many other situations. The project is Open Hardware and Open Source Software and the team continues to work on making Eyedriveomatic more widely available by continuing to refine the design for ease of fabrication, and has even begun to sell kits so those who cannot build it themselves still have access.

The team will continue with the Eyedrivomatic project. If you are inspired by Steve’s story, now is a great time to look into helping out. Contact Cody Barnes if you would like to contribute to the project. Love and appreciation for Steve and his family may be left as comments on the project log.

Beyond The Prize: Eye Driving Wheelchairs

For this year’s Hackaday Prize, we opened up five challenges for hackers and tinkerers to create the greatest hardware in five categories. We asked citizen scientists to build something to expand the frontiers of knowledge. We asked automation experts to build something more useful than the Internet of chocolate chip cookies. In the Assistive Technologies portion of the prize, we asked our community of engineers to build something that would open the world up to all of us.

While this year’s Assistive Technologies challenge brought out some great projects, there is one project from last year that must be mentioned. The Eyedrivomatic is a project to turn any electric wheelchair into a gaze-controlled robotic wheelchair, opening up the world to a population who has never had this level of accessibility at a price this low.

eyedriveomatic-hardwareThe Eyedrivomatac was the winner of last year’s Hackaday Prize, and given the scope of the project, it’s not hard to see why. The Eyedriveomatic is the solution to the problem of mobility for quadriplegics. It does this surprisingly simply by adding a servo-powered robot onto the joystick of an electric wheelchair, with everything controlled by eye gaze technology. While other systems similar to this exist, it’s the cost of the Eyedrivomatic system that makes it special. The robotic half of the project can be easily manufactured on any 3D printer, all the associated hardware can be bought for just a few dollars, and the software stack is completely open source. The entire system is interchangeable between different models of electric wheelchairs without any modifications, too.

Since winning last year’s Hackaday Prize, Patrick, Steve, and David of the Eyedrivomatic project received the grand prize of $196,883, and are now working towards starting their own production run of their revolutionary device. Right now, there’s a small cottage industry of eye gaze controlled wheelchairs cropping up, and the Eyedrivomatic team is busy building and assembling systems for electric wheelchair users across the globe.

The Eyedrivomatic is the best the Hackaday Prize has to offer. At its heart, it’s an extremely simple device — just a few 3D printed parts, a few servos, an Arduino, and some open source software. The impact the Eyedrivomatic has on its users can’t be understated. It is a liberating technology, one of the greatest projects we’ve seen, and we’ve very proud to have the Eyedrivomatic as a Hackaday Prize champion.

Continue reading “Beyond The Prize: Eye Driving Wheelchairs”