Pebble Watch Hack Makes It A Home Automation Controller

[Enrico] loves his Pebble watch, and recently had a chance to explore the code package used to customize its function. It turned out to be really easy to work with so he set out to make the Pebble watch into a home automation controller (dead link; Internet Archive).

So far the two bits of hardware used in his experiments are shown in the image above. The watch itself serves as the controller, interacting with the Ethernet relay board seen in the background. The watch communicates via Bluetooth but you don’t have to know much about that thanks to the example files available from the repository. With communications taken care of he needed a menu system to access commands on the watch. Instead of coding his own he hacked a playlist into the built-in music menu. This allows him to switch the relays on and off again as if he were playing or pausing audio tracks. See it in action after the break.

Continue reading “Pebble Watch Hack Makes It A Home Automation Controller”

Wristwatch Made Of Sandwiched PCBs

wristwatch-from-sandwitched-pcbs

Here’s a wristwatch concept we haven’t seen before. Instead of trying to sandwich everything inside of a case it uses a stack of PCBs as the body of the watch.

[Mats Engstrom] wrote in to tip us off about his build. The design goes with LEDs which is nothing new. But unlike previous offerings [Mats] didn’t go with one LED for each minute. When the touch sensor in the middle of the watch is activated the twelve LEDs on the face will let you know the hour and the nearest five minutes. A video of this is embedded after the break.

The design uses three different circuit boards. The bottom board is the largest and provides slots through which the wrist bands can connect. It also serves as one of the two battery connectors. The second PCB is a spacer with a cutout for the coin cell that powers the device. The top board is where all the magic happens. It’s dual sided to host the LEDs and touch senor, with the PIC microcontroller and support circuitry on the other side.

Continue reading “Wristwatch Made Of Sandwiched PCBs”

OTM-02 Is A 3D Printed Wristwatch

3d-printed-wristwatch

We love looking at roll-your-own wristwatch projects. Getting a project small enough to carry around on your wrist is a real challenge. But we think the OTM-02 wristwatch really hit the form factor right on the mark.

OTM stands for Open source Time Machine. It’s the work of [Hairy Kiwi] and he managed to bring the guts of the watch in at a thickness between 6.5 and 7mm. That includes the LCD, PCB, piezo diaphragm, and the battery. The PCB itself is a four-layer board built on 1mm thick substrate. It’s running an EFM32 (ARM) microcontroller which comes with hardware USB support. The little door sitting open on the side of the 3D printed enclosure provides access to the micro USB connector which can be used to charge the 150 mAh battery inside. That may not sound like much juice, but if you set the display to show minutes only [Hairy] calculates a battery life approaching 175 days. If you just have to have the seconds displayed you can expect about two weeks between charges.

Like the name says, this project is Open Source.

[Thanks Liam]

A Homebrew Binary Wristwatch

watch

There are 2 types of people in the world; those who know binary, those who don’t, and those who know ternary. [Emanuele] thought a binary wristwatch is the pinnacle of nerd and set out to build his own. The resulting binary clock not only screams nerd as intended, but is also a functional time piece, as well.

The idea of a binary wristwatch came to [Emanuele] while he was working with PICs at school. Not wanting to let that knowledge go to waste, he used a PIC16F628 microcontroller for this build. There are four LEDs for the hours and six LEDs for the minutes, each attached to a separate microcontroller pin for easy programming.

To keep time, [Emanuele] kept the PIC in sleep mode most of the time, only waking it up when a an internal timer’s register overflows. The watch spends most of its time sleeping, sipping power from a coin cell battery with a battery life that should last weeks, at least.

The entire circuit is tucked away in a PVC enclosure with a wonderful rainbow ribbon cable band. We’re not so sure about how that feels against the skin all day, but it does exude the nerd cred [Emanuele] was looking for.

Watching 50 Teams Build Something Cool

Last summer, we here at Hackaday participated in the Red Bull Creation Contest. Basically, twelve teams were given webcams and instructions to build something cool. The teams live streamed their build process, and the best of the bunch won a trip to the New York Maker Faire. [Jason Naumoff], the guy behind this build-off is doing it again right now. It’s called The Deconstruction and it pits 50 teams on 6 continents to build something cool while streaming their project to the Internet.

The Deconstruction is a little bit different from Red Bull’s contest – first, the teams don’t have access to ludicrous amounts of energy drinks. Secondly, there’s no set theme for the group entries. It’s a free-for-all build off where teams can make anything they’d like.

We’ve really got to hand it to [Jason] for pulling this off. He MC’d the Red Bull Creation Contest live stream – nearly all 72 hours of it – and was entertaining right up to the very end. You can check out the official stream on the main Deconstruction site, or you can check out the individual team streams here.

Retrotechtacular: How A Watch Works

how-a-mechanical-watch-works

Anyone who has ever tried to keep time with an electronic project will have respect for a timepiece that stays accurate over the span of months or more. We think it’s even more respectable when it comes to mechanical watches. This video was made by the Hamilton watch company back in 1949 to explain the basic processes behind a precision mechanical timepiece.

It takes several minutes to get to the meat of the presentation, but we think you’ll find the introduction just as entertaining as the explanation itself. When it does come time to look inside the watch a set of large pieces is used to help illustrate the workings of each part. The clip (which is also embedded after the break) does a great job with these demonstrations, but almost immediately you’ll come to realize the complexity wrapped up in an incredibly tiny package. It goes on to explain the low-friction properties that are brought to the table by the jewel bearings. Enjoy!

Continue reading “Retrotechtacular: How A Watch Works”

Reverse Geocache Based On STM32 And GPS Wristwatch

reverse_geocache

[Renaud Schleck] somehow got lucky enough to find a GPS wristwatch in the trash. It had a broken LCD screen so its wouldn’t be of much use on that next hiking trip, but he knew it still had potential. He used the GPS module and a few other parts to build this reverse geocache box.

Reverse geocache is a container that is locked, opening only in a pre-defined geographic location. We’ve seen plenty of these projects around here, like this one that talks, or this one which was given as a Christmas gift. They’re popular projects both because of the unique method of getting at the prize inside, and because it doesn’t take a whole lot of hardware to build one. Once [Renaud] had the GPS module he simply need a user interface, locking mechanism, and a microcontroller to pull it all together.

The interface uses a screen from an old cellphone and one push button. The latching system is a tiny geared motor salvaged from a Laptop optical drive. These, along with the GPS watch board are all monitored by the STM32 microcontroller which he programmed using OpenOCD and the Bus Pirate.

[via Reddit]