Wind Powered Strandbeest Could Roam The Land Indefinitely

3d printed strandbeest

We have to admit, Strandbeests are one of our favorite mechanical inventions of recent years — many-legged, life-like mechanisms that walk around? Awesome. [Eric] wanted to design something really cool — so he decided to build a turbine attachment for [Theo Jansen’s] Strandbeest — the AG5 & AG7 models specifically.

If you’re not familiar, the Strandbeest is a mechanical contraption that actually walks around. It’s been developed by [Theo Jansen] for years and has been built in many variations by other people over the years. [Theo] even gave a TED talk on it back in 2007.

The very idea of the Strandbeest is to have it move by itself with autonomy — no electronics allowed! [Theo] has designed a propeller attachment for one of his 3D printable Strandbeests to do this, but [Eric] wanted to take it a step further. He’s designed a more functional wind turbine that sits on top of the Strandbeest, allowing wind from any direction to cause it to walk.

Continue reading “Wind Powered Strandbeest Could Roam The Land Indefinitely”

Mechanical Clock Designed For A CNC Router Gets New Life Using A 3D Printer

[Madis Kaasik] designed a clock a while back using Solid Edge (3D CAD) — but never got a chance to build it — until he became an exchange student at a university in Norway with access to a big industrial 3D printer!

He had originally intended for it to be cut out using a CNC router or with a laser cutter, but when discovered he could use the university’s 3D printer he decided to give it a shot — it’s actually the very first thing he’s ever printed! The designs had to be modified a little bit for 3D printing, but now that it’s done he’s also uploaded them to Thingiverse for anyone to use.

It took quite a bit of fine tuning with the pendulum, weights, and gears to get it ticking properly, but what [Madis] enjoyed most about this project was the realization of just how vast the possibilities of 3D printing are — he’s excited to begin his next big 3D printing endeavor!

Continue reading “Mechanical Clock Designed For A CNC Router Gets New Life Using A 3D Printer”

Printable Lamp Assembles Itself

Printable-Self-Assembling-Lamp

With the advent of 3D printers, printable circuits, and other “one-machine-to-rule-them-all” automated systems, printing fully functional items is fast becoming a reality. The lamp seen above starts out as a flat piece of cardboard with circuits printed onto it — apply some electricity and it will fold itself up, creating a lamp — it even has a capacitive touch sensor for turning it on!

This ingenuity comes straight from Harvard researchers who presented the project “Self-assembling Sensors for Printable Machines” at the IEEE International Conference on Robotics and Automation (ICRA) just last Tuesday in Hong Kong. It’s not fully printable (wires and the LED had to be soldered in by hand) but it’s an amazing proof of concept — there’s also an Arduino off-screen taking care of controlling it.

The cardboard is a sandwich of shape-memory polymers which are triggered by heat, generated by running electricity through thin layers of copper trace. It takes a long time to assemble so the following video has been sped up 32x speed.

Continue reading “Printable Lamp Assembles Itself”

Three-Phase Submersible Thruster Is Open Source And Awesome

submerged_mellon_assembly_v8

Have you ever considered building some kind of underwater vehicle? It’s rather ambitious but [Dane] of Transistor-Man has designed and built a working submersible 3-phase electric thruster — and he’s released the plans online for all to share!

He decided to make this for his 3D printed canoe (another awesome project) which is possible due to his massive SCARA robot 3D printer. The thruster makes use of readily available off the shelf components, but with 3D printed cones for decreased water resistance and other manufactured parts. The housing is water-jet cut, and the poly-carbonate tube had grooves for seals made using a lathe.  The amount of detail in his build logs is incredible — he’s fully modeled all parts in what looks like SolidWorks and uploaded detailed images and designs of all the parts.

The trickiest part of the build was making it water-tight. His first test was to submerge it in a water bath for 8 minutes, and once that was proven, he filled the inside with 5W-20 oil to make sure it wouldn’t leak the other way as well. One of his project goals is for this thruster to work 1 meter underwater without losing more than 10ml of the coolant (oil) per hour.

Continue reading “Three-Phase Submersible Thruster Is Open Source And Awesome”

Designing And Printing A Custom Enclosure

enclosure

So you know how to design a circuit board, assemble the parts, and have a functional device at the end of a soldering session. Great, but if you want to use that device in the real world, you’re probably going to want an enclosure, and Tupperware hacked with an Exacto knife just won’t cut it. It’s actually not that hard to design a custom enclosure for you board, as [Glen] demonstrates with a custom 3D printed project box.

[Glen]’s board, a quad RS-422 transmitter with a PMOD connector, was designed in Eagle. There are a vast array of scripts and plugins for this kind of mechanical design work, including the EagleUP plugins that turn an Eagle PCB into a 3D object that can be imported into SketchUp.

Taking measurements from Eagle, [Glen] designed a small project box that fits the PCB. A few standoffs were added, and the board itself was imported into SketchUp. From there, all he needed to do was to subtract the outline of the connectors from the walls of then enclosure for a custom-fit case. Much better than Tupperware, and much easier than designing a laser cut enclosure.

Once the enclosure was complete, [Glen] exported the design as an STL, ready for 3D printing or in his case, sending off to Shapeways. Either way, the result is a custom enclosure with a perfect fit.

 

Plater Makes It Easy To Fill Your Bed Plate

plater

If you’re a 3D printing power user, you probably try to fit as many parts onto a single print job as possible. Most printing software has this built in to let you do that, but [Grégoire Passault] and his team thought they could do it better with their program Plater — it’s open source too.

They decided to make Plater after designing Spidey: an open-source 4-legged robot that makes use of 22 3D printed parts. The first few times they printed this took a long time because they had to manually arrange the parts — there had to be a better way!

Plater is a fairly simple program that lets you take in a bunch of STL files, set your print bed size and part spacing and then it creates an STL with as many parts in it as it can, organized on your print bed. Then you just have to load it up into your favorite slicing program and you’re good to go.

Seems like an excellent tool to add to your metaphorical 3D printing tool-belt!

The Laser Cutter Attachment For A 3D Printer

cheapo If you already have a 3D printer, you already have a machine that will trace out gears, cogs, and enclosures over an XY plane. How about strapping a laser to your extruder and turning your printer into a laser cutter? That’s what [Spiritplumber] did, and he’s actually cutting 3/16″ wood and 1/4″ acrylic with his 3D printer.

[Spiritplumber] is using a 445nm laser diode attached directly to his extruder mount to turn his 3D printer into a laser cutter. The great thing about putting a laser diode on an extruder is that no additional power supplies are needed; after installing a few connectors near the hot end, [Spiritplumber] is able to switch from extruding to lasing by just swapping a few wires. The software isn’t a problem either: it’s all just Gcode and DXFs, anyway.

There’s an Indiegogo for this, with the laser available for $200. Compare that to the Chinese laser cutters on eBay, and you can see why this is called the L-CHEAPO laser cutter.