A Gramophone For Your Pebble Smart Watch

At a recent Pebble-themed hackathon, one of the teams created a pretty cool device called the TimeDock Sleepeasy.

It’s a gramophone inspired docking station for your Pebble Time smart watch. And it’s not just a 3D printed mount — nope, there’s an Arduino inside! The team’s plan from the beginning was to make an interactive docking station for the Pebble that would allow it to talk to you without actually pressing any buttons on the watch.

It was rather tricky getting the Arduino Uno talking to the Pebble, but once they figured it out they had a lot of options for interaction — they ended up using an ultrasound sensor so you can just wave your hand at the TimeDock and it would tell you the time.

Continue reading “A Gramophone For Your Pebble Smart Watch”

LED Ring Around The ESP8266

The world needs more blinky lights, and [Bertus Kruger] has created a neat way to make lights blink wirelessly. He has a footprint in the middle of the board for soldering the castellated ESP8266 module, and an LED ring around it to create the WiFi Pixel. It’s an LED ring that can be controlled over a WiFi connection. His design is based on a combination of the ubiquitous ESP8266 WiFi chip and a NeoPixel ring from AdaFruit, so there are already great examples of how to code and control the hardware. The project is still in progress, but he has released all of the details, including the Gerber files for the board and the Arduino code that the ESP8266 is running.

It’s a great start: add in battery support and you could have an awesome way to have portable LED blinky light rings. For those who want to try it out without building your own circuit boards, [Bertus] says that it could be built with an ESP8266 dev board and an Adafruit NeoPixel ring. Currently, he is running the device from USB, but there is no reason why it couldn’t be powered from a battery for some portable USB blinkiness.

Continue reading “LED Ring Around The ESP8266”

Hack Puts Aging Sprinkler System Online

Water conservation is on a lot of people’s mind, and with an older sprinkler system one may not have the finest control of when and where the lawn is getting its water. Faced with such a system [Felix] decided to hack into his, adding better computerized scheduling, and internet remote control.

The brains of the operation is handled by a Moteino, which is a Arduino compatible micro controller board with WiFi on board. In order to interface with the sprinkler system, an interface PCB is made. The interface has an on board buck power supply to regulate the 24 volt AC power of the sprinkler down to 5 volt DC for the micro and the 74HC595 shift registers.

The output from the shift registers connects to a pin header where the stock computer normally would have plugged in. With a little software and a phone app, the new micro-controller takes over the sprinkler’s TRIAC’s turning on and off zones with a push of the thumb.

Join us after the break for a quick demonstration video.

Continue reading “Hack Puts Aging Sprinkler System Online”

Arduino TinyGPS Updated To Support GLONASS

GPS is a global technology these days, with the Russian GLONASS system and the forthcoming European Galileo orbiting alongside the original US GPS satellites above our heads. [Florin Duroiu] decided to embrace globalism by forking the TinyGPS library for the Arduino platform to add support for these satellite constellations.

In addition to the GLONASS support, the new version of the venerable TinyGPS adds some neat new features by incorporating the NMEA 3.0 standard (warning: big-ass PDF link). Using this, you can extract interesting stuff such as the calculated position from each satellite constellation, the signal strength of each satellite and a lot more technical stuff about what the satellites are saying about you to your GPS receiver. [Florin] claims it is a drop-in replacement for TinyGPS that should require no rewriting. There is no support for Galileo just yet (as the satellites are still being launched: eight are in orbit now), but [Florin] is looking for help to add this, as well as the new Chinese BEIDOU system once it is operational.

(top image: artists’ view of a Galileo satellite in orbit, courtesy of ESA)

Skittles Sorter

Only Eat Red Skittles? We’ve Got You Covered.

Are you a bit obsessive compulsive with lots of certain things? We are too. Like Skittles! If you’re the kind of person who likes to sort their Skittles, you should seriously look into making your own 3D printed Skittles Sorter.

Built more to challenge his new 3D printer, [MrPrezident] was looking for a project to combine mechanical design with a bit of image recognition prowess — so he came up with this clever, and compact, Skittle sorting machine.

It uses an Arduino Uno with a ZITRADES color sensor module to identify the color of each candy. A small LED helps illuminate the Skittles to ensure an accurate color reading. Then, depending on the color, a series of gears rotate the Skittles piece to its designated color repository.

Theoretically it should also work with M&M’s (which are a bit smaller) but unfortunately, there are 6 colors of M&M’s and only 5 colors of Skittles. What would the machine do then!? We don’t see a reject bin!

Continue reading “Only Eat Red Skittles? We’ve Got You Covered.”

Simple USB Power Meter

The USB interface is being increasingly used as a power supply and charging port for all kinds of devices, besides data transfer. A meter to measure the electrical parameters of devices connected to a USB socket or charger would be handy on any hacker workbench. The folks at [electro-labs] designed this simple USB power meter which does just that.

The device measures voltage and current and displays them, along with the calculated power, on the small 0.5″ OLED display. The circuit is built around an ATmega328. To keep the board size small, and reduce component count, the microcontroller is run off its internal 8MHz clock. A low-resistance shunt provides current sensing which is amplified by the LT6106 a high side current sense amplifier before being fed to the 10 bit analog port of the ATmega. A MCP1525 precision voltage reference provides 2.5V to the Analog reference pin of the microcontroller, resulting in a 2.44mV resolution. Voltage measurement is via a resistive divider that has a range of up to 6V. An Arduino sketch reads voltage and current data on the analog ports and displays measurements on the display. The measured data is averaged to filter out noise.

The OLED display has a SPI interface and requires the u8glib library. The project uses all SMD parts, but is fairly easy to assemble by hand and could be a nice starter project if you want to wet your feet on surface mount assembly techniques. It’s designed using SolaPCB EDA software, and the source files for schematic and board layout are available as a ZIP archive. Download the BoM and Arduino code and you have everything needed to build this nifty device.

Thanks to [Abdulgafur] for sending in this tip. And if you are looking for a more comprehensive solution, check the awesome Friedcircuits USB Tester which we reviewed earlier and is available in the Hackaday Store.

Managing An Unmanaged Switch

Network switches come in two different flavors: managed, where you have some interface to configure and monitor the equipment, and unmanaged where the device just does what it is supposed to do and you can’t really control it. [Tiziano Bacocco] wanted to manage his cheap unmanaged switch, so he did what any good hacker would do: he opened it up.

Inside the Digicom 10/100 switch he found an IP178CH controller IC and a quick search turned up a data sheet. [Tiziano] noticed there were three ways to configure the switch: Some hardware pins could control very basic functions; an EEPROM (absent on the PCB) could configure the device; or the chip would accept commands via a synchronous serial port.

Since the datasheet covered the protocol required, [Tiziano] commandeered an Arduino Pro Mini and used it to send commands to configure the switch. A few resistors and some quick code allowed him to control VLAN and other functions on the switch via the USB port. Of course, he mentioned you could use a Raspberry Pi if you wanted a network interface–or maybe that’s a good excuse to use one of those Ethernet shields you got on clearance at Radio Shack.

Continue reading “Managing An Unmanaged Switch”