Another Tesla Coil Starts

Everyone interested in electronics should build at least one Tesla coil. But be careful. Sure, the high voltage can be dangerous, but the urge to build lots of coils is even worse. [Learnelectronics] shows how to build a slayer exciter using a 3D-printed core, and lots of wire of course. You can see the coil, an explanation of the design, and a comparison to a cheap kit in the video below.

Of course, you hear about Tesla coils, but it is really more of a Tesla transformer. The 3D-printed core holds the many turns of the secondary coil. The larger Tesla coil, amusingly, upset the camera which made it hard to get close-up shots.

Continue reading “Another Tesla Coil Starts”

World’s First Precision Lathe: Indispensable When Constructing The Antikythera Mechanism

The precision lathe with the hooks, the bowstring, and vise visible as material is being processed. (Credit: Clickspring)

We commonly tend to associate lathes with the Industrial Revolution, when metalworking shifted largely from blacksmiths to machinists, but the use of lathes is much older than that. As [Chris] over at the Clickspring YouTube channel demonstrates in a recent video, small precision lathes were exceedingly common in the Ancient World. Not only is there ample historical evidence of them being used as far back as 1300 BCE in Ancient Egypt, but they’re also the most optimal way to get perfectly round pins and other, more intricate shapes that would be an absolute nightmare to create with just some metal files and chisels.

In the video, [Chris] uses two metal hooks, bent in a ninety-degree angle and clamped down in a vise, tapering towards each other into points. A bow string around a round piece of wood is used to bootstrap a more permanent retention element and bushing for the bow string as it is drawn over the wood to rotate it. Subsequent material that has to be worked on in the lathe is then clamped between the two points. This way, using basic materials that have been around for thousands of years and some muscle power, it’s possible to create a small lathe that can be used to create perfectly symmetrical shapes, such as those used in the construction of the Antikythera Mechanism, which [Chris] has been rebuilding for the past years, using only period-correct tools. He’s learned a lot about the mechanism in the process.

Continue reading “World’s First Precision Lathe: Indispensable When Constructing The Antikythera Mechanism”

Remote-Control Kinetic Sand Table Uses A Single Arduino

There’s nothing fun about a Sisyphean task unless you’re watching one being carried out by someone or something else. In that case, it can be mesmerizing like this Arduino-driven kinetic sand table.

What you can’t see. Image via [thang010146] on YouTube
Like many of these builds, it all started with an ordinary coffee table from the hacker’s favorite furnitüre store. [NewsonsElectronics] opened it up and added a 3mm-thick board to hold the sand and another to hold the rails and magnets.

After designing some pieces to connect the rails and pulleys together, [NewsonsElectronics] let the laser cutter loose on some more 3mm stock. A pair of stepper motors connected to a CNC shield do all of the work, driving around a stack of magnets that causes the ball bearing to trudge beautifully through the sand.

Be sure to check out the videos after the break. The first is a nice demonstration, and the second is the actual build video. In the third video, [NewsonsElectronics] explains how they could write the world’s smallest GRBL code to swing this with a single Arduino. Hint: it involves removing unnecessary data from the g-code generated by Sandify.

Don’t have a laser cutter? Here’s a sand table built from 3D printer parts.

Continue reading “Remote-Control Kinetic Sand Table Uses A Single Arduino”

Pinball With No Computers

Pinball machines were the video games of their day. Back when they were king, there were no microcontrollers — everything was electromechanical. We know from experience that fixing these was difficult but we imagine that designing complex play behavior with a bunch of motors, relays, clutches, contacts, and more would have been excruciatingly difficult. [Technology Connections] has several videos about an old Aztec machine and he promises more to come. You can watch the first two below.

To give you an idea of what’s involved, imagine a very simple pinball machine that supports a single player and a handful of targets. When the ball hits a target, that could trigger a micro-switch. The switch closure could trigger a relay that closes a contact for a short period of time. That contact energizes a solenoid that advances the score wheels. So now, when a ball hits a target, the score wheel will spin enough to award ten points. To make sure there is enough time for the score to advance, the relay uses something like a mechanical flip flop.

Sound complicated? That’s nothing. Don’t forget, the machine also has to reset the score at the start of the game, count the ball in play, and end the game when the last ball returns. Then consider a real game. There will be multiple players and fancy sequences (e.g., hit the red target three times to award double scores for other targets).

While we knew a fair bit about the design of pinball machines already, we did learn a lot about their history and where the idea came from. The video also explains why it is called pinball since modern machines don’t really have pins — these were like relay-based computers with strange electromagnetic I/O devices.

While pinball machines were the best example of this sort of thing, there were also things like bowling machines and ladder-logic industrial control systems. We’ve even seen an electromechanical phone answering machine.

Continue reading “Pinball With No Computers”

Tube Design Tips To Save A Writer’s Project

Most of the stories we cover here are fresh from the firehose, the newest and coolest stuff to interest you during your idle moments. Sometimes though, we come across a page that’s not new, but is interesting in its own right enough to bring to your attention. So it is with our subject here, because when faced with a tube circuit design problem, we found salvation in a page from [The Valve Wizard].

Do you need to apply negative feedback to a triode amplifier? The circuit is simplicity itself, but sadly when we were at university they had long ago stopped teaching the mathematics behind the component values. Step forward everything you need to know about triode amplifier negative feedback.

Negative feedback is a pretty simple idea: subtract a little of the amplifier’s output from the input. It reduces the amplifier’s gain with a flat response, so it’s useful for removing humps in the frequency response and reducing the tendency for distortion. In a single-ended triode amp it’s done with a resistor and capacitor from anode to grid, but the question is, just what resistor or capacitor?. Here the page has all the answers, taking the reader through calculating the desired gain, and picking the value of the capacitor to avoid affecting the frequency response. We wish that someone had taught us this three decades ago!

The website is full of really useful info about valve or tube amps, and it’s worth mentioning that he’s made it available in book format too. There’s no reason not to have a go at vacuum electronics. Meanwhile in case you are wondering what project prompted this, it was a quest to improve upon this cheap Chinese kit amplifier.

This Baby ‘Scope Is Within Your Reach

The modern oscilloscope is truly a marvelous instrument, being a computer with a high-speed analogue front end which can deliver the function of an oscilloscope alongside that of a voltmeter and a frequency counter. They don’t cost much, and having one on your bench gives you an edge unavailable in a previous time. That’s not to dismiss older CRT ‘scopes though, the glow of a phosphor trace has illuminated many a fault finding procedure. These older instruments can even be pretty simple, as [Mircemk] demonstrates with a small home-made example that we have to admit to rather liking.

At its heart is a small 5 cm round CRT tube, with an off-the-shelf buck converter supplying the HT, a neon lamp relaxation oscillator supplying the timebase, and a set of passive components conditioning the signal to the deflection plates. The whole thing runs from 12 V and fits in a neat case. It has one huge flaw in that there is no trigger circuit, and sadly this compromises its usefulness as an instrument. Our understanding of a neon oscillator is a little rusty but we’re guessing the two-terminal neon lamp would have to be replaced by one of the more exotic gas-filled tubes with more electrodes, of which one takes the trigger pulse.

Even without a trigger it’s still a neat device, so take a look at it. Perhaps surprisingly we’ve seen few CRT ‘scopes made from scratch here at Hackaday, but never fear, here’s one used as an audio visualiser.

Homebrew Gel Fuel Keeps The Steam Coming, Legally

All it takes is one knucklehead to go and do something stupid to screw things up for everyone. We’re not exactly sure who the knucklehead is behind the recent ban on hexamine fuel tablets, but given that it’s now proscribed in the UK under the “Control of Poisons and Explosives Precursors Regulations 2023,” we expect that that story is a doozy.

So what’s hexamine, and why should we care if it’s banned? As [Markus Bindhammer] explains, hexamine is a solid fuel commonly used to power model steam engines, among myriad other uses. Its ban leaves a bit of a hole in the model steam community, which [Markus] seeks to fill with this quick and easy gel fuel chemistry project.

The “California Snowball” is a homebrew version of what’s in those solid fuel cans you see heating chafing pans at catered events, with one common brand being Sterno. [Markus] used a saturated solution of calcium acetate (6 g in 50 ml of water) and added that to 150 ml of ethanol; commercial formulations usually use methanol to prevent anyone from drinking the stuff, with varying degrees of success. The calcium acetate forms a gel that looks like whipped cream and traps the ethanol inside. The gel can be easily scooped up and spread around, and burns with a clean, smokeless flame.

It may not exactly be a “plug and play” replacement for hexamine tablets, but one does what one can. And if there’s one thing we can celebrate about model steam engineers, it’s their persistence. We got a bunch of them together last year for a Hack Chat with [Quinn Dunki], and their passion for making things move with steam was pretty impressive.

Continue reading “Homebrew Gel Fuel Keeps The Steam Coming, Legally”