DisplayPort: A Better Video Interface

Over the years, we’ve seen a good number of interfaces used for computer monitors, TVs, LCD panels and other all-things-display purposes. We’ve lived through VGA and the large variety of analog interfaces that preceded it, then DVI, HDMI, and at some point, we’ve started getting devices with DisplayPort support. So you might think it’s more of the same. However, I’d like to tell you that you probably should pay more attention to DisplayPort – it’s an interface powerful in a way that we haven’t seen before.

By [Belkin+Abisys], CC BY-SA 3.0
The DisplayPort (shortened as DP) interface was explicitly designed to be a successor to VGA and DVI, originating from the VESA group – an organization created by multiple computer-display-related players in technology space, which has previously brought us a number of smaller-scale computer display standards like EDID, DDC and the well-known VESA mount. Nevertheless, despite the smaller scale of previous standards, DisplayPort has since become a hit in computer display space for a number of reasons, and is more ubiquitous than you might realize.

You could put it this way: DisplayPort has all the capabilities of interfaces like HDMI, but implemented in a better way, without legacy cruft, and with a number of features that take advantage of the DisplayPort’s sturdier architecture. As a result of this, DisplayPort isn’t just in external monitors, but also laptop internal displays, USB-C port display support, docking stations, and Thunderbolt of all flavors. If you own a display-capable docking station for your laptop, be it classic style multi-pin dock or USB-C, DisplayPort is highly likely to be involved, and even your smartphone might just support DisplayPort over USB-C these days. Continue reading “DisplayPort: A Better Video Interface”

Dentist Tool Hardware Inspires Non-Slip Probe Tips

Cross-pollination between different industries can yield interesting innovations, and a few years ago [John Wiltrout] developed some non-slip meter probe adapters. He recently used our tips line to share some details that you won’t see elsewhere, letting us know how the idea came to be.

It started with [John] being frustrated by issues that will sound familiar: probes did not always want to stay in place, and had a tendency to skid around at the slightest provocation. This behavior gets only more frustrating as boards and components get smaller. John was also frustrated by the general inability to reliably probe through barriers like solder masking, oxidation, and conformal treatments on circuit boards. Continue reading “Dentist Tool Hardware Inspires Non-Slip Probe Tips”

A Volumetric Display With A Star Wars Look And Feel

It may not exactly be what [Princess Leia] used to beg [Obi-Wan] for help, but this Star Wars-inspired volumetric display is still a pretty cool hack, and with plenty of extra points for style.

In some ways, [Maker Mac]’s design is a bit like a 3D printer for images, in that it displays slices of a solid model onto closely spaced planar surfaces. Sounds simple enough, but there are a lot of clever details in this build. The main component is a lightly modified LCD projector, a DLP-based machine with an RGB color wheel. By removing the color wheel from the projector’s optical path and hooking its sync sensor up to the control electronics, [Mac] is able to increase the framerate of the display, at the cost of color, of course. Other optical elements include a mirror to direct the projected images upwards, and a shutter harvested from an old pair of 3D TV glasses. Continue reading “A Volumetric Display With A Star Wars Look And Feel”

An image of two dogs and a bison wearing harnesses with the energy harvesting system. Text next to the animals says Dog 1 (Exp. 1), Dog 2 (Exp. 2), Dog 2 (Exp. 3), and Wisent (Exp. 4)

Kinefox Tracks Wildlife For A Lifetime

Radio trackers have become an important part of studying the movements of wildlife, but keeping one running for the life of an animal has been challenging. Researchers have now developed a way to let wildlife recharge trackers via their movements.

With trackers limited to less than 5% of an animal’s total mass to prevent limitations to the their movement, it can be especially difficult to fit trackers with an appropriately-sized battery pack to last a lifetime. Some trackers have been fitted with solar cells, but besides issues with robustness, many animals are nocturnal or live in dimly-lit spaces making this solution less than ideal. Previous experiments with kinetically-charged trackers were quite bulky.

The Kinefox wildlife tracking system uses an 18 g, Kinetron MSG32 kinetic energy harvesting mechanism to power the GPS and accelerometer. Similar to the mechanical systems found in automatic winding watches, this energy harvester uses a pendulum glued to a ferromagnetic ring which generates power as it moves around a copper coil. Power is stored in a Li-ion capacitor rated for 20,000 charge/discharge cycles to ensure better longevity than would be afforded by a Li-ion battery. Data is transmitted via Sigfox to a cloud-based database for easy access.

If you want to build one to track your own pets, the files and BOM are available on GitHub. We’ve featured other animal trackers before for cats and dogs which are probably also applicable to bison.

Hack Club OnBoard

Hack Club Grants Encourage Open Source PCB Designs By Teens

[Hack Club] is a nonprofit network of coder and maker clubs for teenage high school students around the world. With an impressive reach boasting clubs in about 400 schools, they serve approximately 10,000 students. Their OnBoard program asserts, “Circuit boards are magical. You design one, we’ll print it!”

Any teenage high school student can apply for a [Hack Club] OnBoard Grant to have their Printed Circuit Board design fabricated into real hardware.  The process starts by designing a PCB using any tool that can generate Gerber files. The student then publishes their design on GitHub and submits the Gerber files to a PCB manufacturer.

A screenshot from the board house showing the completed design upload and production cost is the main requirement of the grant application.  If approved, the grant provides up to $100 to cover PCB manufacturing costs.

OnBoard encourages collaboration, community, and friends. Designers can share their projects and progress with [Hack Club] teens around the world. Those who are working on, or have completed, their own circuit board designs can share support and encouragement with their peers.

Example hardware projects from [Hack Club] include Sprig, an open-source handheld game console based on the Raspberry Pi Pico microcontroller.  Teen makers can explore the example OnBoard projects and then it’s… three, two, one, go!

Recreating An Analog TV Test Pattern

While most countries have switched to digital broadcasting, and most broadcasts themselves have programming on 24/7 now, it’s hard to remember the ancient times of analog broadcasts that would eventually stop sometime late at night, displaying a test pattern instead of infomercials or reruns of an old sitcom. They were useful for various technical reasons including calibrating the analog signals. Some test patterns were simply camera feeds of physical cards, but if you wanted the most accurate and reliable test patterns you’d need a Philips pattern generator which created the pattern with hardware instead, and you can build your own now because the designs for these devices were recently open-sourced. Continue reading “Recreating An Analog TV Test Pattern”