A Call For Better Shower Temperature Controls

A good shower is a beautiful, rejuvenating experience. Contrarily, a shower that’s either too hot or too cold becomes a harrowing trial of endurance. [Ben Holmen] has been musing on the way we control temperature in our showers, and he has come to the conclusion that it’s not good enough. He’s done the math, quantified the problem, and is calling for better solutions for all.

[Ben]’s plot of shower temperature vs. mixer tap angle.
[Ben]’s complaint rests with the mixer taps that have become the norm in modern shower installations. These taps have a 180-degree range of motion. On one end, you get maximum cold water output, on the other, maximum hot water output. This is fine for a kitchen sink where we often want one extreme or the other, and exact temperature isn’t important. However, for a shower, it’s terrible.

By [Ben]’s measurements, just a 10-degree range on his own shower tap corresponds to comfortable, usable temperatures. That’s means just 5.6% of the control range is devoted to temperatures the user is likely to select. His argument goes that this is the opposite of how it should work, and that most of the tap’s range should be dedicated to comfortable temperatures.

Ideal water temperature curve, compared to standard tap.

This would allow much finer control of shower temperature in the actual useful range. It would allow us to make tweaks to our shower temperature without having to ever-so-delicately nudge the mixer tap. Extreme hot and extreme cold temperatures should still be available, but left at the utter extremes.

Sadly, [Ben] doesn’t work for Big Tap, so he can’t directly influence the product sold to the public. Instead, he’s calling for manufacturers to develop shower valves that prioritize the temperatures that humans desire most. Unfortunately, it’s not immediately clear how the mechanics of such a valve would work without adding considerable cost and complexity when compared to the traditional model.

What do you think? Are things fine the way they are, or does [Ben] have a point? Perhaps you’re a two-tap evangelist! In any case, we’d love to hear your comments below. Meanwhile, if you’re more worried about the water bill than the temperature, we can help you there as well!

Machine Learning Baby Monitor, Part 2: Learning Sleep Patterns

The first lesson a new parent learns is that the second you think you’ve finally figured out your kid’s patterns — sleeping, eating, pooping, crying endlessly in the middle of the night for no apparent reason, whatever — the kid will change it. It’s the Uncertainty Principle of kids — the mere act of observing the pattern changes it, and you’re back at square one.

As immutable as this rule seems, [Caleb Olson] is convinced he can work around it with this over-engineered sleep pattern tracker. You may recall [Caleb]’s earlier attempts to automate certain aspects of parenthood, like this machine learning system to predict when baby is hungry; and yes, he’s also strangely obsessed with automating his dog’s bathroom habits. All that preliminary work put [Caleb] in a good position to analyze his son’s sleep patterns, which he did with the feed from their baby monitor camera and Google’s MediaPipe library.

This lets him look for how much the baby’s eyes are open, calculate with a wakefulness probability, and record the time he wakes up. This worked great right up until the wave function collapsed the baby suddenly started sleeping on his side, requiring the addition of a general motion detection function to compensate for the missing eyeball data. Check out the video below for more details, although the less said about the screaming, demon-possessed owl, the better.

The data [Caleb] has collected has helped him and his wife understand the little fellow’s sleep needs and fine-tune his cycles. There’s a web app, of course, and a really nice graphical representation of total time asleep and awake. No word on naps not taken in view of the camera, though — naps in the car are an absolute godsend for many parents. We suppose that could be curated manually, but wouldn’t doubt it if [Caleb] had a plan to cover that too.

Continue reading “Machine Learning Baby Monitor, Part 2: Learning Sleep Patterns”

Homebrew Ball Drop Machine Rings In The New Year

The New Year’s Ball Drop in New York City stems from an old English naval tradition. These days, it’s more of a celebratory thing, and [Jon Gonzalez] wanted to bring a bit of that joy to his own celebrations. Thus enter the Ball-Drop-O-Matic 3000.

The ball itself consists of two 3D printed halves assembled together with a linear bearing in the middle. It’s loaded up with a ton of addressable LEDs to give it plenty of flash, pomp, and circumstance as it rides down the flagpole. Animations are coded in to the K-1000C display controller using LEDEdit2014, an older piece of software which can turn Flash animations into commands to run WS2812B LED strips.

Lowering the ball is handled by a motorized winch. The winch is mounted at the base of the flagpole for aesthetic reasons, with the cable travelling up to the top of the pole, over a pulley, and back down to the ball. The descent speed is set to countdown the last minute of the year, with numbers animated on the ball itself.

The build was clearly a great addition to [Jon’s] New Years celebrations, even if it wasn’t quite finished until 9:35 PM on the big night. We’ve seen other fun ball drop builds before, too.

Continue reading “Homebrew Ball Drop Machine Rings In The New Year”

Simple Wood-Fired Water Heater Is Surprisingly Effective

These days, humans have gotten all fancy-schmancy with their gas and electric water heaters. Heck, some are even using heat pumps to do the work as efficiently as possible. [HowToLou] got back to basics instead, with his simple wood-fired water heater design.

The design is straightforward, featuring 100ft of quarter-inch copper tubing wrapped directly around a steel barrel. Room-temperature water is fed into the tubing via a garden hose, and comes out much hotter, thanks to a fire burning away in the barrel stove of [Lou’s] own construction.

For an input water temperature of 41 F, the output reaches 105 F at a flow rate of 0.67 gallons per minute. By [Lou]’s calculations, that’s a heat transfer to the water of roughly 21,000 BTU per hour. [Lou] achieved this with just $55 worth of copper tubing, and he notes that simply doubling up the tubing would increase the heat transfer to the water even further.

If you’re looking for a hot shower from your outdoor wood stove, a build like this might be just the ticket. With the stove burning hot and your hose as a water supply, you could experience the joy of the hot water while you’re standing in the snow outside. We’ve seen [Lou]’s work before, too. Video after the break.

Continue reading “Simple Wood-Fired Water Heater Is Surprisingly Effective”

Model Train Delivers Fresh Coffee

Model trains are good fun, though few of them serve any purpose beyond amusement or authentic railway simulation. [ProjectAir] decided to put his model train to practical use by having it deliver fresh espresso, and faced plenty of difficult challenges along the way.

It sounds simple, but the practicalities of the task proved difficult. After all, even a slight wobble is enough to tip a coffee cup off a small train. Automating everything from the railway itself to the kitchen coffee machine was no mean feat either. Plus, the aim was to deliver coffee from a downstairs kitchen up to an upstairs office. This meant finding a way to get the train to climb a steep staircase and to carry the coffee over a 20-meter journey without losing the caffeinated beverage in the process. That required the construction of a fancy train elevator to do the job — an impressive accomplishment on its own.

The final system is a joy to watch. Having a train roll into the upstairs workshop with a fresh brew certainly beats having to go all the way downstairs for a cup. Just don’t think about the fact that moving the coffee machine upstairs might have been a quicker solution.

Continue reading “Model Train Delivers Fresh Coffee”

Now ChatGPT Can Make Breakfast For Me

The world is abuzz with tales of the ChatGPT AI chatbot, and how it can do everything, except perhaps make the tea. It seems it can write code, which is pretty cool, so if it can’t make the tea as such, can it make the things I need to make some tea? I woke up this morning, and after lying in bed checking Hackaday I wandered downstairs to find some breakfast. But disaster! Some burglars had broken in and stolen all my kitchen utensils! All I have is my 3D printer and laptop, which curiously have little value to thieves compared to a set of slightly chipped crockery. What am I to do!

Never Come Between A Hackaday Writer And Her Breakfast!

OK Jenny, think rationally. They’ve taken the kettle, but I’ve got OpenSCAD and ChatGPT. Those dastardly miscreants won’t come between me and my breakfast, I’m made of sterner stuff! Into the prompt goes the following query:

"Can you write me OpenSCAD code to create a model of a kettle?" Continue reading “Now ChatGPT Can Make Breakfast For Me”

Cheap Kitchen Scale Learns To Speak JSON With ESP32

Smart kitchen appliances are expensive, and more often than not, your usage data goes to whichever company operates the inevitable cloud service. Meanwhile the cheap ones contain substantially the same components without the smarts, so surely a hardware hacker can add a microcontroller to a cheap appliance for a bit of smart home technology without the privacy issues? It’s something [Liore] has done with an Amazon Basics kitchen scale, removing the electronics and wiring up an ESP32 to the load cell instead.

The Wheatstone bridge load cell circuit generates a tiny voltage difference that’s far too small for an ESP32 to measure, so in between the pair is an Avia Semiconductor HX711 strain gauge amplifier module. In addition, there’s a small OLED screen and the two buttons used in the Amazon scale are wired in too, providing the the kitchen scale functionality you’d expect.

Naturally the ESP32 brings along with it WiFi networking capabilities, which [Liore] has taken full advantage of here. By navigating a web browser to its IP address, you’ll receive the scale’s current reading in JSON format. This should make it easy to integrate with other systems, from Home Assistant to OctoPrint. We can see that there is plenty of scope for further enhancements for those prepared to write a little code.

Of course, this isn’t the first enhanced scale we’ve brought you, here’s one with Bluetooth. We’ve also seen hackers dispense with the kitchen-safe trappings and build the load cell directly into their own contraptions.