Picture of the dumper board, with a ROM chip and a Pi Pico inserted

A Disposable Dumper For ROM Chips With A Pi Pico

ROM dumping is vital for preserving old hardware, and we’ve seen many hacks dedicated to letting someone dump a ROM and send its contents to some hacker stuck with a piece of technology that lost its firmware. However, that requires ROM dumping tools of some kind, and it’s often that the lucky ROM-equipped hacker doesn’t own such tools. Now, you could mail the chip to someone else, but postal services in many countries are known to be UDP-like — lossy and without delivery guarantees. The risk of leaving both hackers without a ROM chip is quite real, so, instead of mailing ROM chips or expensive devices around, [Amen] proposes a cheap and disposable flash dumping tool that you could mail instead.

The ROMs in question are 24-pin 2332 and 2364 chips, which run at 5 V and can easily be read with any microcontroller. Thus, his concept is a very simple board, with a Pi Pico and flash chip socket on it, as well as some resistors. Those are used to provide rudimentary GPIO over-voltage protection, since the RP2040 runs its GPIOs at 3.3 V. All the magic is in the software – the tool can both write the chip contents in the RP2040’s internal memory, as well as dump it over USB to the computer. Everything is open-source – if you ever need to dump a rare chip on the other side of the world, modify the design to your liking, order a few copies and then mail them to the hacker involved – losing such a package is way less significant than losing a ROM chip with last-of-its-kind firmware on it.

Old ROM chips are dying out, causing whole generations of hardware, like synths, to fade away – with tools like this one, you can lend a hand in preserving the legacy of many an industry and hobby, and many hackers do. Looking to learn about the basics of parallel flash dumping? This post from 2012 will be a good start, and then check out a more recent venture to learn how things are done with more recent parts.

Brass Hardware Makes For Pretty Potentiometer Knobs

Knobs and switches can make or break the aesthetic and tactile appeal of a project. Fine hi-fi hardware goes hard on these details, while cheap knock-off guitar pedals often go the other way. If you’re looking for a unique, cheap, and compelling solution for potentiometer knobs, you might like to consider using converted brass hardware for the job.

Gorgeous, no?

The idea comes from [Kevin Jordan], who realized that some simple 3D printed parts would enable him to repurpose brass hardware for use with common split-shaft potentiometers. He grabbed a bunch of brass flare caps intended for use with gas piping, and got to work.

The result is the simple 3D printed cap converter. It has a threaded outer portion, which screws neatly inside a brass flare cap. Inside, it features a hole to mate to the potentiometer shaft. While this could be done with a spline, it also works with a simple hole since the plastic is soft enough to simply push the potentiometer shaft into.

The flare caps look great when pressed into service as knobs. [Kevin] uses them on a tennis racket guitar he built, and the brass knobs beautifully set off against the natural wood finishes of the build. If you’re looking for some unique adornments for your own projects, you might like to experiment with this concept yourself! Alternatively, you can try making your own knobs from scratch.

Continue reading “Brass Hardware Makes For Pretty Potentiometer Knobs”

Building An All-in-One Desktop Out Of Framework Parts

The Framework laptop prides itself on having reusable parts, and hackers all around routinely challenge the claims by building projects reusing them. Yet again, [whatthefilament] puts the Framework hardware to the test, by taking all the laptop internals and building an AiO (All-in-One) desktop computer with it. Hot on the heels of his Framework tablet project we covered a few months ago, this desktop reuses as much as possible – the mainboard, the display and the expansion cards in particular, and even one of the hinges is reused for adjusting the monitor’s angle.

Of course, this build required a custom case – and [whatthefilament]’s design is fully 3D-printed, with STLs and assembly instructions available for anyone interested. Parts of the desktop are held by magnets for ease of assembly and maintenance, with a few parts requiring screws held in by heat-set inserts. Complete with a webcam, speakers and even a WiFi card, all it needs for completeness is an external keyboard&mouse combo, making for a sleek desktop that anyone in possession of a few Framework parts can build.

Laptop-to-desktop builds are nice – take the X-PC project, starting with a pile of school laptops and rebuilding them into colourful and sturdy desktops for classroom use. We’ve seen quite a few fancy Framework projects already, and that’s because they provided motherboards to hackers for specifically project purposes, kickstarting a fair few creations to grace our pages. Other hacker-friendly laptops didn’t lag behind, either – for instance, here’s the hacker favourite, Novena, getting the desktop treatment.

Build A Circuit Sculpture-Style VU Meter For Music

One of the coolest things any sound system can have is some kind of musical visualization. Thumping level meters that pump with the volume are a great example, and were particularly popular in the 1980s. Now, you can build a rainbow set with great response, thanks to this guide from [Invexlab World].

The build relies on a very simple circuit that relies entirely on analog electronics in lieu of the usual digital signal analysis usually employed for the job. It’s a barebones design that’s assembled using a jig to create the attractive circuit sculpture structure. It uses simple colored LEDs, assembled in a line with red at the bottom, stepping through yellow and green, to blue and white at the top. A series of diodes is placed in series, with the sound level having to exceed the voltage drop of successive diodes to light the higher LEDs. It’s intended to be directly connected to a speaker’s audio input, and thus likely does load down the amplifier output slightly.

The result is an attractive rainbow VU meter display that would look great as a part of any old-school stereo setup. We can imagine it would look even better if it was cast in clear resin. Video after the break.

Continue reading “Build A Circuit Sculpture-Style VU Meter For Music”

Audio Playback Toy For DSP Adventures

The declining costs of single-board computers has made serious computing power available for even the most trivial of tasks. It’s easy enough to slap a Raspberry Pi onto almost anything for nearly the same cost as a powerful 32-bit microcontroller platform, but this takes some of the fun out of projects for a few of us. Looking to get into the weeds can be a challenge as well, as [Michal Zalewski] demonstrates in this audio playback device he built from a simple 8-bit microcontroller.

The small toy takes audio input from a microphone through an op-amp and feeds this signal to an ADC within the AVR128DA28 microcontroller. The data is then stored on a separate memory chip ready to be played back through another op-amp paired with a speaker. This is where being familiar with the inner workings of the microcontroller comes in handy. By manipulating the interrupt routines in specific ways, the audio stored in memory can be played back at various speeds.

[Michal] intended this build to be a toy for one of his younger relatives, and for the price of a few ICs and buttons it does a pretty good job of turning a regular voice into a chipmunk voice like some commercial children’s toys some of us might remember. If the design aesthetics of this gadget look familiar, you may be thinking of his minimalist gaming device which we recently featured.

Now ChatGPT Can Make Breakfast For Me

The world is abuzz with tales of the ChatGPT AI chatbot, and how it can do everything, except perhaps make the tea. It seems it can write code, which is pretty cool, so if it can’t make the tea as such, can it make the things I need to make some tea? I woke up this morning, and after lying in bed checking Hackaday I wandered downstairs to find some breakfast. But disaster! Some burglars had broken in and stolen all my kitchen utensils! All I have is my 3D printer and laptop, which curiously have little value to thieves compared to a set of slightly chipped crockery. What am I to do!

Never Come Between A Hackaday Writer And Her Breakfast!

OK Jenny, think rationally. They’ve taken the kettle, but I’ve got OpenSCAD and ChatGPT. Those dastardly miscreants won’t come between me and my breakfast, I’m made of sterner stuff! Into the prompt goes the following query:

"Can you write me OpenSCAD code to create a model of a kettle?" Continue reading “Now ChatGPT Can Make Breakfast For Me”

Screenshot of a terminal showing the HELP command in action - outputting descriptions of other commands

Let’s Make SCPI More Helpful

The SCPI (Standards Command for Programmable Instruments) protocol is exceptionally popular in lab and workspace tools, letting you configure and fetch data from oscilloscopes and lab scales alike in a standardized way. However, when interfacing with a SCPI device, you need to use a programming guide document if you want to know the commands for any of the inevitably extended features; essentially, SCPI isn’t as human-friendly as you might want. [MisterHW] argues that SCPI could use more discoverability by proposing a HELP? command.

This proposal is so intuitive, it makes you wonder why it isn’t in the base spec. It adds a built-in command that provides information on other commands. Internally, the description is just an extra string parameter that you add to your command definition code, and you can use it to describe the parameter types and ranges it takes. The output is both human-readable and machine-parseable, and as it’s stored within your code, it’s way quicker to update the description string than it is to re-release programming guides. Which are themselves prone to being outdated as-is, so decreasing reliance on them is a win-win.

The proposal makes a lot of sense, and [MisterHW] is willing to back it up with a pull request to the most popular SCPI library, libscpi. Whenever the pull request finally goes through, you will have the option to easily add the HELP? command support to whatever SCPI-connected device you might have brewing.

While the old devices will eventually fade, SCPI is not about to die out – hackers keep building devices with SCPI as the communication protocol, as the spec is quite powerful. For instance, here’s this fancy temperature logger, or this Source Measurement Unit – both of them use SCPI for hacker-to-device data transfer, and it’s likely to be libscpi under the hood. Ever wondered what SCPI is all about? Check out our overview!