Magnet Implants, Your Cyborg Primer

What would you do to gain a sixth sense? Some of us would submit to a minor surgical procedure where a magnet is implanted under the skin. While this isn’t the first time magnet implants have been mentioned here on Hackaday, [The Thought Emporium] did a phenomenal job of gathering the scattered data from blogs, forum posts, and personal experimentation into a short video which can be seen after the break.

As [The Thought Emporium] explains in more eloquent detail, a magnet under the skin allows the implantee to gain a permanent sense of strong magnetic fields. Implantation in a fingertip is most common because nerve density is high and probing is possible. Ear implants are the next most useful because oscillating magnetic fields can be translated to sound.

For some, this is merely a parlor trick. Lifting paper clips and messing with a compass are great fun. Can magnet implants be more than whimsical baubles?

Continue reading “Magnet Implants, Your Cyborg Primer”

Hackaday Prize Entry: Remote Control by Head Gestures

Some people may think they’re having a bad day when they can’t find the TV remote. Yet there are some people who can’t even hold a remote, let alone root around in the couch cushions where the remote inevitably winds up. This entry in the Assistive Technologies phase of the 2017 Hackaday Prize seeks to help such folks, with a universal remote triggered by head gestures.

Mobility impairments can range from fine motor control issues to quadriplegia, and people who suffer from them are often cut off from technology by the inability to operate devices. [Cassio Batista] concentrated on controlling a TV for his project, but it’s easy to see how his method could interface with other IR remotes to achieve control over everything from alarm systems to windows and drapes. His open-source project uses a web cam to watch a user’s head gestures, and OpenCV running on a CHIP SBC looks for motion in the pitch, yaw, and roll axes to control volume, channel, and power. An Arduino takes care the IR commands to the TV. The prototype works well in the video below; with the power of OpenCV we can imagine mouth gestures and even eye blinks adding to the controller’s repertoire.

The Assistive Tech phase wraps up tomorrow, so be sure to get your entries in. You’ll have some stiff competition, like this robotic exoskeleton. But don’t let that discourage you.

Continue reading “Hackaday Prize Entry: Remote Control by Head Gestures”

Hackaday Prize Entry: Fighting Dehydration One Sip at a Time

Humans don’t survive long without water, and most people walk around in a chronic state of mild dehydration even if they have access to plenty of drinking water. It’s hard to stay properly hydrated, and harder still to keep track of your intake, which is the idea behind this water-intake monitoring IoT drinking straw.

Dehydration is a particularly acute problem in the elderly, since the sense of thirst tends to diminish with age. [jflaschberger]’s Hackaday Prize entry seeks to automate the tedious and error-prone job of recording fluid intake, something that caregivers generally have to take care of by eyeballing that half-empty glass and guessing. The HydrObserve uses a tiny turbine flowmeter that can mount to a drinking straw or water bottle cap. A Hall sensor in the turbine sends flow data to a Cypress BLE SoC module, which totalizes the volume sipped and records a patient identifier. A caregiver can then scan the data from the HydrObserve at the end of the day for charting and to find out if anyone is behind on their fluids.

There are problems to solve, not least being the turbine, which doesn’t appear to be food safe. But that’s a small matter that shouldn’t stand in the way of an idea as good as this one. We’ve seen a lot of good entries in the Assistive Technology phase of the 2017 Hackaday Prize, like a walker that works on stairs or sonic glasses for the blind. There are only a couple of days left in this phase — got any bright ideas?

Detecting Dire Diseases – with a Selfie?

They say the eyes are the windows to the soul. But with a new smartphone app, the eyes may be a diagnostic window into the body that might be used to prevent a horrible disease — pancreatic cancer. A research team at the University of Washington led by [Alex Mariakakis] recently described what they call “BiliScreen,” a smartphone app to detect pancreatic disease by imaging a patient’s eyes.

Pancreatic cancer is particularly deadly because it remains asymptomatic until it’s too late. One early symptom is jaundice, a yellow-green discoloration of the skin and the whites of the eyes as the blood pigment bilirubin accumulates in the body. By the time enough bilirubin accumulates to be visible to the naked eye, things have generally progressed to the inoperable stage. BiliScreen captures images of the eyes and uses image analysis techniques to detect jaundice long before anyone would notice. To control lighting conditions, a 3D-printed mask similar to Google’s Cardboard can be used; there’s also a pair of glasses that look like something from [Sir Elton John]’s collection that can be used to correct for ambient lighting. Results look promising so far, with BiliScreen correctly identifying elevated bilirubin levels 90% of the time, as compared to later blood tests. Their research paper has all the details (PDF link).

Tools like BiliScreen could really make a difference in the early diagnosis and prevention of diseases. For an even less intrusive way to intervene in disease processes early, we might also be able to use WiFi to passively detect Parkinson’s.

Continue reading “Detecting Dire Diseases – with a Selfie?”

Hackaday Prize Entry: CPAP Humidifier Monitor Alarm

CPAP (Continuous Positive Airway Pressure) machines can be life-changing for people with sleep apnea. [Scott Clandinin] benefits from his CPAP machine and devised a way to improve his quality of life even further with a non-destructive modification to monitor his machine’s humidifier.

With a CPAP machine, all air the wearer breathes is air that has gone through the machine. [Scott]’s CPAP machine has a small water reservoir which is heated to humidify the air before it goes to the wearer. However, depending on conditions the water reservoir may run dry during use, leading to the user waking up dried out and uncomfortable.

To solve this in a non-invasive way that required no modifications to the machine itself, [Scott] created a two-part device. The first part is a platform upon which the CPAP machine rests. A load cell interfaced to an HX711 Load Cell Amplifier allows an Arduino Nano to measure the mass of the CPAP machine plus the integrated water reservoir. By taking regular measurements, the Arduino can detect when the reservoir is about to run dry and sound an alarm. Getting one’s sleep interrupted by an alarm isn’t a pleasant way to wake up, but it’s much more pleasant than waking up dried out and uncomfortable from breathing hot, dry air for a while.

The second part of the device is a simple button interfaced to a hanger for the mask itself. While the mask is hung up, the system is idle. When the mask is removed from the hook, the system takes measurements and goes to work. This makes activation hassle-free, not to mention also avoids spurious alarms while the user removes and fills the water reservoir.

Non-invasive modifications to medical or other health-related devices is common, and a perfect example of nondestructive interfacing is the Eyedriveomatic which won the 2015 Hackaday Prize. Also, the HX711 Load Cell Amplifier has an Arduino library that was used in this bathroom scale refurb project.

Condom and Catheter Team up to Save New Mothers’ Lives

The title is sure to draw a snicker from some readers, but the purpose of this field-expedient treatment for postpartum hemorrhage is deadly serious, and a true medical hack that has the potential to save the lives of new mothers.

Postpartum hemorrhage is the leading cause of death during pregnancy, claiming about 86,000 women every year. While it can occur up to six weeks after giving birth, PPH is most serious immediately after delivery and can require aggressive treatment to prevent hypovolemic shock and eventual death. A fully equipped obstetrical suite will have access to an array of medications and devices to staunch the flow, including a uterine balloon tamponade (UBT) kit. But at $400 a kit, these devices are hard to come by in the developing world.

Not to be dissuaded, midwife [Anne Mulinge] from Nairobi, Kenya created a simple, cheap substitute using common items. A common urinary catheter is covered with an ordinary condom, the end of which is secured around the catheter with twine. Once inserted into the woman’s uterus, the condom is filled with saline solution through the catheter, expanding the condom and applying direct pressure to the bleeding uterine walls. The pressure allows the mother’s clotting mechanism to catch up with the decreased blood flow.

So far, [Anne] claims the device has saved three new mothers, and other midwives are being trained in the technique. Here’s hoping that more lives are saved with this simple hack, and perhaps with this more complex one designed to get blood to remote clinics as fast as possible.

Thanks to [LP Bing] for the tip.

Movie Encoded in DNA is the First Step Toward Datalogging with Living Cells

While DNA is a reasonably good storage medium, it’s not particularly fast, cheap, or convenient to read and write to.

What if living cells could simplify that by recording useful data into their own DNA for later analysis? At Harvard Medical School, scientists are working towards this goal by using CRISPR to encode and retrieve a short video in bacterial cells.

CRISPR is part of the immune system of many bacteria, and works by storing sequences of viral DNA in a specific location to identify and eliminate viral infections. As a tool for genetic engineering, it’s cheaper and has fewer drawbacks than previous techniques.

Besides generating living rickrolls and DMCA violations, what is this good for? Cheap, self-replicating sensors. [Seth Shipman], part of the team of scientists at Harvard, explains in an interview below a number of possible applications. His focus is engineering cells to act as a noninvasive data acquisition tool to study neurobiology, for example by using engineered neurons to record their developmental history.

It’s possible to see how this technique can be used more broadly and outside an academic context. Presently, biosensors generally use electric or fluorescent transducers to relay a detection event. By recording data over time in the DNA of living cells, biosensors could become much cheaper and contain intrinsic datalogging. Possible applications could include long-term metabolite (e.g. glucose) monitors, chemical detectors, and quality control.

It’s worth noting that this technique is only at the proof of concept stage. Data was recorded and retrieved manually by the scientists into the bacterial genome with 90% accuracy, demonstrating that if cells can be engineered to record data themselves, accuracy and capacity are high enough for practical applications.

That being said, if anyone is working on a MEncoder or ffmpeg command line option for this, let us know in the comments.

Continue reading “Movie Encoded in DNA is the First Step Toward Datalogging with Living Cells”