Frustrating Fun With Magnetic Levitation

[Andrey Mikhalchuk] built his own magnetic levitation device and you can too… if you have the patience. He’s not using electromagnets, like the Arduino levitator or the floating globe. Instead, a pair of ceramic ring magnets and a few hours are all it takes.

The base of his device is a couple of very large ring magnets that would most often be used in speakers. It’s hard to see them in the image above because there’s an inverted plastic container obscuring them. A second (or third depending on how you’re counting) ring magnet is selected because it is smaller than the circular void in the magnetic base. It’s impossible to simply balance the magnet in the air, but spinning it is a different story. By creating a perfectly balance magnetic top, then spinning it inside the magnetic field of the base, you can leave it floating in mid-air.

Check out the video after the break. It’s a neat effect, but you really do have to have a perfect setup for it to work. [Andrey] mentions that it takes a couple of hours to fine-tune. And if the ambient conditions change slightly, it throws the whole thing off.

Continue reading “Frustrating Fun With Magnetic Levitation”

Roll Your Own Toner Transfer Dice

diy_toner_transfer_dice

If you happen to be in the market for some designer dice or need a set of custom dice for a game you have created, you could pay a ton of money to have them made, or you can do it yourself.

[Dicecreator] runs a blog dedicated to the ins and outs of creating DIY game and collector’s dice. This subject is not something that we would normally be interested in, but one particular item caught our interest – DIY toner transfer dice. Very similar to the process of creating a toner transfer PCB, he walks through the steps required for making your own dice with very little overhead.

The steps are likely quite familiar to those who have fabricated your own PCBs at home. He starts out with blank dice, sanding the sides down with increasingly fine sandpaper until they are ready for the transfer process. An image is printed on glossy inkjet photo paper, which is then applied to each die with a standard clothes iron. After a bit of soaking in water to remove the excess paper, the die is ready to go.

Sure it’s not exactly rocket science, but it is a cool little trick that would work quite well if you are trying to replace a lost die or if you simply want to make a fun gift for a friend.

Magic: The Gathering Nixie Life Counter

Someone sent in a tip that pointed us to this Magic: The Gathering forum thread where a user named [DistortedDesigns] made a life counter for Magic: The Gathering out of Nixie tubes. While there’s not many details for this build, it’s just too cool to be forgotten in a single forum.

The project began by etching some plexiglas. There’s some earlier examples of [DistortedDesigns]’ work that look very professional. The electronic are extremely simple – the 25 LEDs run off of 2 AA cells, and the nixies run off of 2 C cells. We were wondering when [DistortedDesigns] would drop the A-bomb, but it looks like this build doesn’t use a microcontroller.

Continue reading “Magic: The Gathering Nixie Life Counter”

Intro To DC Motor Control Using The SN754410

So your electronic hobby skills are coming along quite nicely but you’re not very comfortable doing more than blinking a few LEDs. Now’s a good time to try something new by driving a couple of DC motors.

You probably know that you can’t just hook these up to the pins of your favorite uC and call it good. The motors draw a lot of current (especially if they’re strained in lifting a heavy load) which would burn out your logic circuitry. Add to this the excess induced current that is generated when a spinning motor is shut off and you’re going to need a control system that can handle these dangers.

Enter the h-bridge motor driver. [Chris] has guided us through the process of building and using a H-bridge in the past. This time he’s using a motor controller that has four half H-bridges built into it. He hooks up the SN754410 to two motors, giving him speed and direction control for both based on the duty cycle of a PWM signal entering the chip for less than $2.50. Check out the video after the break for an overview of his methodology, then work your way through the multi-page post that he recently published.

Continue reading “Intro To DC Motor Control Using The SN754410”

Amazing Pipe Organ Desk Features Secret Compartments And An All-wood Logic Board

wood_organ_desk_with_secret_compartment

Feeling pretty good after putting together your brand new standing computer desk? Step aside please, [Kagen Schaefer] has something he’d like to show you.

His Pipe Organ Desk is undoubtedly one of the coolest pieces of furniture we have seen in a long time. The project took [Kagen] over three years to complete, which sounds about right once you see how much attention was put into every last detail.

This desk is amazing in several ways. First off, the entire desk was constructed solely from wood. The drawers, the supports, knobs, screws, and even the air valves – all wood. Secondly, when one of the desk’s drawers are pushed in, air is directed to the organ pipes at the front of the desk, which plays a note.

A small portion of the air is also directed into the desk’s pneumatic logic board, which keeps track of each note that has been played. When someone manages to play the correct tune, a secret compartment is unlocked. The pneumatic logic board is an unbelievable creation, consisting of well over 100 wooden screws which can be tuned to recognize any number of “secret tunes”.

Sure a well-placed axe can open the compartment too, but who would destroy such a fine piece of work?

[via Make]

Chilean Teen Builds Automatic Earthquake Alarm

chilean_teen_earthquake_alarm

When an earthquake is about to strike in Chile, who do you think is first to sound the alarm? You might be surprised that it’s not the government, but rather a 14 year old boy.

After living through an earthquake in 2010 and seeing the devastation this spring in Japan, Chilean teenager [Sebastian Alegria] decided that he wanted to construct something similar to Japan’s earthquake warning system. He purchased an off the shelf earthquake detector for less than $100, and connected it to his computer via an Arduino.

Now, whenever seismic activity is detected, his sensor tweets an alert letting his 29,000+ followers know that a perceptible earthquake is 5 to 30 seconds away. Apparently the Chilean government is working on a similar system that is still at least a year away, so in the meantime his fellow citizens rely on [Sebastian] instead.

While it might seem like a relatively easy hack to pull off compared to other earthquake detectors, we’re impressed by [Sebastian’s] creativity, and his will to help others. He’s been pounding away at computers since he was about 4 years old and has several other popular Twitter-based projects under his belt already, so we won’t be surprised if we hear from him again in the future.

One Really Big Quadcopter That Is Following In The Steps Of The Spruce Goose

Behold the Land-Bear-Shark, a quadcopter on a rather grand scale. At a full eight kilograms it’s an easy target to compare the [Howard Hughes] behemoth, but in addition to the weight, this still has yet to make its first flight.

To give you some scale to the image above, the board at the center is an Arduino. It controls the beast, along with the help of a SparkFun IMU board which rides atop. Really, if any quadcopter of this size has a chance of working, this should be the one. The construction is beautiful, making use of carbon fiber rod along with 3D-printed connectors to assemble the frame. A lot of thought has gone into small things like conserving weight used on the landing gear, which are incorporated into the bottom corner brackets. The batteries are connected in a manner that makes them easy to adjust, acting as ballast for balancing the craft.

We’re keeping our fingers crossed that this will be more than the tongue-in-cheek title of the post which calls it a Quadrotor-shaped sculpture.

[via Adafruit]