Hovering Questions About Magnetic Levitation

Who doesn’t love magnets? They’re functional, mysterious, and at the heart of nearly every electric motor. They can make objects appear to defy gravity or move on their own. If you’re like us, when you first started grappling with the refrigerator magnets, you tried to make one hover motionlessly over another. We tried to position one magnet over another by pitting their repellent forces against each other but [K&J Magnetics] explains why this will never work and how levitation can be done with electromagnets. (YouTube, embedded below.)

In the video, there is a quick demonstration of their levitation rig and a brief explanation with some handy oscilloscope readings to show what’s happening on the control side. The most valuable part, is the explanation in the article where it walks us through the process, starting with the reason permanent magnets can’t be used which leads into why electromagnets can be successful.

[K&J Magnetics]’s posts about magnets are informative and well-written. They have a rich mix of high-level subjects without diluting them by glossing over the important parts. Of course, as a retailer, they want to sell their magnets but the knowledge they share can be used anywhere, possibly even the magnets you have in your home.

Simpler levitators can be built with a single electromagnet to get you on the fast-track to building your own levitation rig. Remember in the first paragraph when we said ‘nearly’ every electric motor used magnets, piezoelectric motors spin without magnets.

Continue reading “Hovering Questions About Magnetic Levitation”

Floating Ants and Drops of Liquid with an Acoustic Levitator

Amuse your friends, amaze your enemies, and perplex ants and other insects, insofar as they are capable of perplexment. Accomplish all this and more with this handy dandy homebrew acoustic levitator.

Before anyone gets to thinking about using this technique to build a hoverboard that actually hovers, it’s best that you scale your expectations way, way down. Still, being able to float drops of liquid and small life forms is no mean feat, and looks like a ton of fun to boot. [Asier Marzo]’s Instructable’s post fulfills a promise he made when he first published results for what the popular press then breathlessly dubbed a “tractor beam,” which we covered back in January. This levitator clearly has roots in the earlier work, what with 3D-printed hemispherical sections bristling with ultrasonic transducers all wired in phase. A second section was added to create standing acoustic waves in the middle of the space, and as the video below shows, just about anything light enough and as least as cooperative as an ant can be manipulated in the Z-axis.

There’s plenty of room to expand on [Asier]’s design, and probably more practical applications than annoying bugs. Surface-mount devices are pretty tiny — perhaps an acoustic pick and place is possible?

Continue reading “Floating Ants and Drops of Liquid with an Acoustic Levitator”

Horizontal Magnetic Levitation Experiments

Levitating chairs from the Jetsons still have a few years of becoming a commercial product though they are fun to think about. One such curious inventor, [Conor Patrick], took a deep dive into the world of maglev and came up with a plan to create a clock with levitating hands. He shares the first part of his journey to horizontal levitational control.

[Conor Patrick] bought an off-the-shelf levitation product that was capable of horizontal levitation. Upon dissecting it he found a large magnet, four electromagnet coils, and a hall effect sensor. These parts collectively form a closed-loop control to hold an object at a specific distance. He soon discovered that in fact, there were just two coils energized by H-bridges. His first attempt at replicating the circuit, he employed a breadboard which worked fine for a single axis model. Unfortunately, it did not work as expected with multiple coils.

After a few iteration and experiments with the PID control loop, he was able to remove unwanted sensor feedback as well as overshoot in control current. He finally moved to a Teensy with a digital PD loop. The system works, but only marginally. [Conor Patrick] is seeking help from the control loop experts out there and that is the essence of the OSHW world. The best part of this project is that it is a journey that involves solving one problem at a time. We hope to see some unique results in the future.

We have covered Acoustic Levitation in the past and the Levitating Clock on a similar beat. We’re certain a more refined approach is on the horizon since many of us are now looking at making one to experiment with on our workbench.

How to Levitate 100lbs

Most of our readers are already going to be familiar with how electromagnets work — a current is induced (usually with a coil) in a ferrous core, and that current aligns the magnetic domains present in the core. Normally those domains are aligned randomly in such a way that no cumulative force is generated. But, when the electric field created by the coil aligns them a net force is created, and the core becomes a magnet.

As you’d expect, this is an extremely useful concept, and electromagnets are used in everything from electric motors, to particle accelerators, to Beats by Dre headphones. Another use that you’re probably familiar with from your high school physics class is levitation. When two magnets are oriented with the same pole towards each other, they repel instead of attract. The same principle applies to electromagnets, so that an object can be levitated using good ol’ electricity.

That, however, isn’t the only way to levitate something using magnets. As shown in the video below, permanent magnets can be used to induce a current in conductive material, which in turn exerts a magnetic field. The permanent magnets induce that current simply by moving — in this case on rotors spun by electric motors. If the conductive material is placed below the magnets (like in the video), it will push back and you’ve got levitation.

Continue reading “How to Levitate 100lbs”

Acoustic Levitation with a Twist

Don’t blame us for the click-baity titles in the source articles about this handheld “acoustic tractor beam”. You can see why the popular press tarted this one up a bit, even at the risk of drawing the ire of Star Trek fans everywhere. Even the journal article describing this build slipped the “tractor beam” moniker into their title. No space vessel in distress will be towed by [Asier Marzo]’s tractor beam, unless the aliens are fruit flies piloting nearly weightless expanded polystyrene beads around the galaxy.

That doesn’t detract from the coolness of the build, revealed in the video below. There’s no tutorial per se, but an Instructables post is promised. Still, a reasonably skilled hacker will be able to replicate the results with ease straight from the video. Using mostly off the shelf hardware, [Marzo] creates a bowl-shaped phased array of ultrasonic transducers driven by an Arduino through a DC-DC converter and dual H-bridge driver board to boost the 40 kHz square waves from 5 Vpp to 70 Vpp. By controlling the phasing of the signals, the tractor beam can not only levitate small targets but also move them axially. It looks like a lot of fun.

Acoustic levitation is nothing new here – we’ve covered 3D acoustic airbending, as well as an acoustic flip-dot display. Being able to control the power of sound waves in a handheld unit is a step beyond, though.

Continue reading “Acoustic Levitation with a Twist”

JOLED – a 3D Flip Dot Display

Flip-Dot displays are so awesome that they’re making a comeback. But awesome is nothing when you can have an insane flip-dot display that is three-dimensional with the dots floating in mid-air. Researchers at the Universities of Sussex and Bristol have built what they call JOLED, an array of floating pixels that can be controlled via a combination of ultrasonic standing waves and an electrostatic field. These “voxels” can be individually moved in space via ultrasonics, and can also be individually flipped or rotated through any angle, via the electrostatic field.

The key to the whole thing is something they call Janus Objects – hence JOLED. Janus particles have different features or chemistry on two opposite sides. A portion of each voxel is speckled with a small amount of titanium dioxide nano powder. This gives it a bipolar charge that makes it respond to the variable electrostatic field and hence capable of axial rotation. Half of each white voxel can then be covered with a contrasting color – red, blue, black – to achieve the flip dot effect. Each voxel appears to be a couple of millimeters in diameter. The ultrasonic actuators appear to be regular piezo transmitters found in every hacker’s parts bin. Transparent glass plates on opposite sides apply the variable electrostatic field.

While this is still experimental and confined to the research lab, future applications would be interesting. It would be like breaking e-ink displays out of their flat glass confines and giving them a third dimension. The short, two-minute video after the break does a good job of explaining what’s going on, so check it out. Now, who want’s to be the first to build a JOLED clock?

Thanks to [Garrow] for tipping us off about this.

Continue reading “JOLED – a 3D Flip Dot Display”

Fail of the Week: Pinewood Derby Cheat Fails Two Ways

Would you use your tech prowess to cheat at the Pinewood Derby? When your kid brings home that minimalist kit and expects you to help engineer a car that can beat all the others in the gravity-powered race, the temptation is there. But luckily, there are some events that don’t include the kiddies and the need for parents to assume the proper moral posture. When the whole point of the Pinewood Derby is to cheat, then you pull out all the stops, and you might try building an electrodynamic suspension hoverboard car.

Fortunately for [ch00ftech], the team-building Derby sponsored by his employer is a little looser with the rules than the usual event. Loose enough perhaps to try a magnetically levitating car. The aluminum track provided a perfect surface to leverage Lenz’s Law. [ch00ftech] tried different arrangements of coils and drivers in an attempt to at least reduce the friction between car and track, if not outright levitate it. Sadly, time ran out and physics had others ideas, so [ch00ftech], intent on cheating by any means, tried spoofing the track timing system with a ridiculous front bumper of IR LEDs. But even that didn’t work in the end, and poor [ch00f]’s car wound up in sixth place.

So what could [ch00ftech] had done better? Was he on the right course with levitation? Or was spoofing the sensors likely to have worked with better optics? Or should he have resorted to jet propulsion or a propeller drive? How would you cheat at the Pinewood Derby?


2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which celebrates failure as a learning tool. Help keep the fun rolling by writing about your own failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.