MIDI And A Real Vox Humana Come To A Century-Old Melodeon

A hundred years or more of consumer-level recorded music have moved us to a position in which most of us unconsciously consider music to be a recorded rather than live experience. Over a century ago this was not the case, and instead of a hi-fi or other device, many households would have had some form of musical instrument for their own entertainment. The more expensive ones could become significant status symbols, and there was a thriving industry producing pianos and other instruments for well-to-do parlours everywhere.

One of these parlour instruments came the way of [Alec Smecher], a pump organ, also known as a harmonium, or a melodeon. He’s carefully added a MIDI capability to it, and thus replaced its broken “Vox Humana” tremolo effect intended as a 19th century simulation of a choir, with a set of genuine human sounds. There is an almost Monty Python quality to his demonstration of this real Vox Humana, as you can see in the video below.

Lest you think though that he’s gutted the organ in the process of conversion, be rest assured that this is a sensitively applied piece of work. A microswitch has been placed beneath each key, leaving the original mechanism intact and working. An Arduino Leonardo has the microswitches multiplexed into a matrix similar to a keyboard, and emulates a USB MIDI device. It’s fair to say that it therefore lacks the force sensitivity you might need to emulate a piano, but it does result in rather an attractive MIDI instrument that also doubles as a real organ.

Continue reading “MIDI And A Real Vox Humana Come To A Century-Old Melodeon”

Wind Chimes and Dry Ice Make an Unusual Musical Instrument

When it comes to making music, there are really only a few ways to create the tones needed — pluck something, blow into something, or hit something. But where does that leave this dry-ice powered organ that recreates tunes with wind chimes and blocks of solid CO2?

It turns out this is firmly in the “hit something” camp, as [Leah Edwards] explains of her project. When the metal wind chime tubes come in contact with dry ice, the temperature difference sublimates the solid CO2. The puff of gas lifts the tube slightly, letting it fall back against the brick of dry ice and making a tone. The process is repeated rapidly, providing a vibrato effect while the tube is down. [Leah] used solenoids to lift the tubes and, having recently completed a stint at National Instruments, a bunch of NI gear to control them. The videos below show a few popular tunes and a little bit about the organ build. But what — no songs from Frozen?

We can easily imagine this same build using an Arduino or some other microcontroller. In fact, it puts us in mind of a recent reed organ MIDI project that has a few ideas to offer, like ways to quiet those solenoids.  Continue reading “Wind Chimes and Dry Ice Make an Unusual Musical Instrument”

Reed Organ MIDI Conversion Tickles All 88 Keys

What did you do in high school? Chances are it wasn’t anywhere near as cool as turning a reed organ into a MIDI device. And even if you managed to pull something like that off, did you do it by mechanically controlling all 88 keys? Didn’t think so.

A reed organ is a keyboard instrument that channels moving air over sets of tuned brass reeds to produce notes. Most are fairly complex affairs with multiple keyboards and extra controls, but the one that [Willem Hillier] scored for free looks almost the same as a piano. Even with the free instrument [Willem] is about $500 into this project. Almost half of the budget went to the solenoids and driver MOSFETs — there’s a solenoid for each key, after all. And each one required minor surgery to reduce the clicking and clacking sounds that don’t exactly contribute to the musical experience. [Willem] designed custom driver boards for the MOSFETs with 16 channels per board, and added in a couple of power supplies to feed all those hungry solenoids and the three Arduinos needed to run the show. The video below shows the organ being stress-tested with the peppy “Flight of the Bumblebee”; there’s nothing wrong with a little showing off.

[Willem]’s build adds yet another instrument to the MIDI fold. We’ve covered plenty before, from accordions to harmonicas and even a really annoying siren.

Continue reading “Reed Organ MIDI Conversion Tickles All 88 Keys”

God of Papercraft Builds Working Organ Used for Own Adulation

There’s a wide world to explore when it comes to papercraft, but we reserve special praise for fully functional builds. [Aliaksei Zholner’s] working papercraft organ is a stunning example of what can be achieved with skill and perseverance.

The video is short but covers some finer touches – the folded concertinas of paper acting as springs to return the keys, for example. Air is supplied by a balloon, and the organ has a tone similar to other toy organs of comparable size.

The builder has declined to share templates at this stage, due to the complexity of the model and the fact that apparently even the thickness of the paper used can affect the function. This is not surprising — to get any sort of pipe organ to play in tune requires finesse and careful fine tuning. The build thread sheds some further light on the build (in Russian) if you’re curious to know more.

Perhaps the one thing we find surprising is that we haven’t seen something similar that’s 3D printed. If you’ve done it, smash it through on the tip line! Else, if you’re thirsty for more functional papercraft, you can’t go past the fantastic papercraft strandbeest build we covered back in 2011.

Tiny Pipe Organ Needs Tiny Church

There are a lot of unusual listings on eBay. If you’re wondering why someone would have a need for shredded cash, or a switchblade comb, or some “unicorn meat” (whatever that is), we’re honestly wondering the same thing. Sometimes, though, a listing that most people would consider bizarre finds its way to the workbench of someone with a little imagination. That was the case when [tinkartank] found three pipe organ pipes on eBay, bought them, and then built his own drivers.

The pipes have pitches of C, D, and F# (which make, as far we can tell, a C add9 flat5 no3 chord). [tinkartank] started by firing up the CNC machine and creating an enclosure to mount the pipes to. He added a church-like embellishment to the front window, and then started working on the controls for the pipes. Each pipe has its own fan, each salvaged from a hot air gun. The three are controlled with an Arduino. [tinkartank] notes that the fan noise is audible over the pipes, but there does seem to be an adequate amount of air going to each pipe.

This project is a good start towards a fully functional organ, provided [tinkartank] gets lucky enough to find the rest of the pipes from the organ. He’s already dreaming about building a full-sized organ of sorts, but in the meantime it might be interesting to use his existing pipes to build something from Myst.

An Organ Made from Back-Driven Steppers

[Josh] wrote in to tell us about an experimental instrument he’s been working on for a couple of months. We’re glad he did, because it’s a really cool project. It’s an organ that uses the principle of back-drive—applying torque to the output shaft of a motor—to create sounds.  [Josh] is back-driving four octaves worth of stepper motors with spinning wooden disks, and this generates alternating current. At the right speeds, the resulting sinusoidal waveform falls within the range of human hearing and can be amplified for maximum musical enjoyment.

[Josh] built this organ from the ground up, including the keys which are made from oak and walnut. Each of the forty-nine stepper motors has a corresponding wooden disk. The larger the wooden disk in the stack, the higher the resulting pitch. [Josh] says that if he built it for a full 88 keys, the highest note’s disk would be sixteen feet in diameter.

This stack of disks is driven independently by a separate DC motor, and the speed determines the key it will play in. When [Josh] plays a note, that note’s lever is actuated and its stepper motor makes contact with its disk in the stack. When they meet, the motor is back-driven by the spinning disk. In other words, they work in concert to produce some cool, eerie sounds.

Here’s a somewhat similar sort of build made from lasers and fans, if you consider that both instruments create music from objects that weren’t built to do so. Watch [Josh] play his stepper organ after the break. He has several build videos on his YT channel, and we’ve also embedded the one that covers the motor, power, and electronics part of the build.

Continue reading “An Organ Made from Back-Driven Steppers”

Retrotechtacular: Building Hammond Organ Tones

Here’s a short film made by the Hammond Organ Company with the intent to educate and persuade potential consumers. Right away we are assured that Hammond organs are the cream of the crop for two simple reasons: the tone generator that gives them that unique Hammond sound, and the great care taken at every step of their construction.

Hammond organs have ninety-one individual electromagnetic tone wheel assemblies. Each of these generate a specific frequency based on the waviness of a spinning disk’s edge and the speed at which it is rotated in front of an electromagnet. By using the drawbars to stack up harmonics, an organist can build lush walls of sound.

No cost is spared in Hammond’s tireless pursuit of excellence. All transformers are wound in-house and then sealed in wax to make them impervious to moisture. Each tone wheel is cut to exacting tolerances, cross-checked, and verified by an audio specialist. The assembly and fine tuning of the tone generators is so carefully performed that Hammond alleges they’ll never need tuning again.

This level of attention isn’t limited to the guts of the instrument. No, the cabinetry department is just as meticulous. Only the highest-quality lumber is carefully dried, cut, sanded, and lacquered by hand, then rubbed to a high shine. Before it leaves the shop, every Hammond organ is subject to rigorous inspection and a performance test in a soundproofed room.

Continue reading “Retrotechtacular: Building Hammond Organ Tones”