Automation Makes Traditional Japanese Wood Finishing Easier

Unless you move in architectural circles, you might never have heard of Yakisugi. But as a fence builder, [Lucas] over at Cranktown City sure has, with high-end clients requesting the traditional Japanese wood-finishing method, which requires the outer surface of the wood to be lightly charred. It’s a fantastic look, but it’s a pain to do manually. So, why not automate it?

Now, before we get into a whole thing here, [Lucas] himself notes that what he’s doing isn’t strictly Yakisugi. That would require the use of cypress wood, and charring only one side, neither of which would work for his fence clients. Rather, he’s using regular dimensional lumber which is probably Douglas fir. But the look he’s going for is close enough to traditional Yakisugi that the difference is academic.

To automate the process of burning the wood and subsequently brushing off the loose char, [Lucas] designed a double-barreled propane burner and placed it inside a roughly elliptical chamber big enough to pass a 2×8 — sorry, metric fans; we have no idea how you do dimensional lumber. The board rides through the chamber on a DIY conveyor track, with flame swirling around both sides of the board for an even char. After that, a pair of counter-rotating brushes abrade off the top layer of char, revealing a beautiful, dark finish with swirls of dark grain on a lighter background.

[Lucas] doesn’t mention how much wood he’s able to process with this setup, but it seems a lot easier than the manual equivalent, and likely yields better results. Either way, the results are fantastic, and we suspect once people see his work he’ll be getting more than enough jobs to justify the investment.

Continue reading “Automation Makes Traditional Japanese Wood Finishing Easier”

A man standing next to a log holds a wooden mallet and a grey froe with a wooden handle. The froe's long straight blade sits atop the end of the log. Several cuts radiate out from the center of the log going through the length of the wood.

Making Wooden Shingles With Hand Tools

While they have mostly been replaced with other roofing technologies, wooden shingles have a certain rustic charm. If you’re curious about how to make them by hand, [Harry Rogers] takes us through his friend [John] making some.

There are two primary means of splitting a log for making shingles (or shakes). The first is radial, like one would cut a pie, and the other is lateral, with all the cuts in the same orientation. Using a froe, the log is split in progressively smaller halves to control the way the grain splits down the length of the log and minimize waste. Larger logs result in less waste and lend themselves to the radial method, while smaller logs must be cut laterally. Laterally cut shingles have a higher propensity for warping and other issues, but will work when larger logs are not available.

Once the pieces are split out of the log, they are trimmed with an axe, including removing the outer sapwood which is the main attractant for bugs and other creatures that might try eating your roof. Once down to approximately the right dimensions, the shingle is then smoothed out on a shave horse with a draw knife. Interestingly, the hand-made shingles have a longer lifespan than those sawn since the process works more with the grain of the wood and introduces fewer opportunities for water to seep into the shingles.

If you’re looking for something more solarpunk and less cottagecore for your house, maybe try a green solar roof, and if you’ve got a glass roof, try cleaning it with the Grawler.

Continue reading “Making Wooden Shingles With Hand Tools”

A large, short set of tree stumps supports many smaller, straight trees atop them. They are on a picturesque mountain with a orange deciduous tree behind them.

Daisugi – Growing Straight Lumber Without Killing The Tree

In 14th Century Japan, there was a shortage of straight lumber for building and flat land on which to grow it. Arborists there developed a technique that looks like growing trees on top of trees, called daisugi.

Similar to the European practice of pollarding for firewood and basket materials, daisugi has been likened to bonsai on steroids. Starting with a Japanese cedar tree, one chops the top off the tree once it has grown to sufficient size to survive this initial shock. The following spring, you start carefully guiding the new growth through pruning to create tall, straight trunks on top of the “platform cedar.” Pruning takes place approximately every two years and harvesting every twenty. A daisugi tree can produce new shoots for several hundred years if properly maintained.

Although often used as a decorative technique today, it seems like an interesting way to grow your own perfect lumber if you have the room for it. We suspect the technique could be used on other species that lend themselves to pollarding like oak or maple, but harvest times and reliable straight trunks might vary. With sustainable production of wood for cross-laminated timber (CLT) and other advanced timbers being of growing importance, we wonder if these techniques could make a comeback?

Continue reading “Daisugi – Growing Straight Lumber Without Killing The Tree”

A white man with red hair in pigtails under a brown cap holds an axe with a black head and wooden handle. The axe has a rectangular box welded onto the back side of its trapezoidal head.

Deadblow Axe Splits Wood With Minimal Rebound

Dead-blow hammers are well-known in the construction industry for minimizing rebound. [Jacob Fischer] is on a mission to bring this concept to splitting axes.

Over the course of several months, [Fischer] has been working on adding a dead-blow to a splitting axe. This fifth iteration uses a custom-forged head from blacksmith [Todd Elder] with a dead-blow box welded to the poll. The combination of the head geometry and the dead-blow distributing the delivery of force seems to result in a very effective splitting axe.

The dead-blow portion of the axe is a steel box filled with lead (Pb) BBs. Since the BBs are trailing the axe head within the box, the force from the BBs is delivered later than the initial impact of the steel axe head onto the block of wood, allowing the full force of the blow to be spread out over more time. Dead-blow hammers typically use polymers to further absorb any rebound energy, so there is some limit to the extent rebound can be reduced as seen in the testing portion of the video.

Looking for other ways to split wood? How about this cross-bladed axe or maybe a log splitter or two? If you’re curious about how they used to make axes in the old days, we’ve got you covered there too.

Continue reading “Deadblow Axe Splits Wood With Minimal Rebound”

Have A Ball With This 3D Printed Sphere-Making Machine

Alright, everyone has 30 seconds to get all the jokes out of their system before we proceed with a look at this 3D printed wooden ball polisher.

Ready?

Theoretically, making a sphere out of any material should be easy. All you need to do is pick a point in space inside the material and eliminate everything more than a specified distance from that point. But in practice, sphere-making isn’t quite so simple. The machine [Fraens] presents in the video below is geared more toward the final polish than the initial forming, with a trio of gear motors set 120 degrees apart driving cup-shaped grinding pads.

Constant pressure on the developing sphere is maintained with a clever triangular frame with springs that pre-load the arms and pull them in toward the workpiece, but stop at the desired radius. The three grinding pads are fitted with sandpaper and constantly turn, wearing down the rough piece until it reaches the final diameter. The machine also supports more aggressive tooling, in the form of hole saws that really get to work on the rough blank. Check it out in the video below.

While we appreciate the fact that this is 3D printed, watching the vibrations it has to endure while the blank is still rough, not to mention all the dust and chips it creates, makes us think this machine might not stand up for long. So maybe letting this circular saw jig cut out a rough ball and using this machine for the final polish would be a good idea. Continue reading “Have A Ball With This 3D Printed Sphere-Making Machine”

Autofeeding CNC Lathe Cranks Out Parts All By Itself

The trouble with building a business around selling low-margin widgets is that you have to find a way to make a lot of them to make it worth your while. And if the widget in question is labor-intensive to make, you’ve got to find ways to reduce your inputs. That sounds like a job for industrial automation, a solution that’s often out of reach of small shops, for all the obvious reasons. Not if you’re clever about things, though, as this fully automated CNC lathe work cell shows.

This build comes to us from the woodshop of [Maher Lagha], where he’s making wooden honey dippers. Wooden dowel blanks are dispensed from an infeed rack and chucked between centers on the headstock and pneumatic tailstock. A two-axis stage in front of the workpiece moves a tool against the spinning stock, carving out the honey dipper in just a few minutes. When the lathe work is done, the spindle stops, the tailstock pulls the honey dipper back off the headstock, and a pneumatic piston unceremoniously whacks the almost-finished part — it looks like it still needs a little manual post-processing — into a bin. Lather, rinse, repeat, profit.

[Maher] doesn’t provide many details, but just looking at the work cell shows a veritable feast of industrial automation equipment. The spindle and tailstock of the lathe sit on a bed made from a massive slab of aluminum extrusion, and the X- and Y-axes use linear rails and ballscrews. And mindful of the effects of wood chips on delicate mechanisms, [Maher] did a good job of containing the mess with a host of acrylic guards.

As we said when we saw [Maher]’s wooden coaster work cell a while back, the wood widget business must be pretty good to justify automation like this. What’s nice with both these rigs is that they look like they could be quickly reprogrammed and retooled to create other products. Pretty impressive.

Continue reading “Autofeeding CNC Lathe Cranks Out Parts All By Itself”

A black plastic trim piece from a vehicle interior. It has slight flecking in its texture. It is sitting on an off-white bench overlooking a workshop.

Can Car Parts Grow On Trees?

Cars don’t grow on trees, but Ford is designing car parts from olive tree cuttings. [via Electrek]

Ford is no stranger to designing parts from plants for their vehicles. Henry famously liked to beat on the Soy Bean Car with a blunted axe to tout the benefits of bioplastic panels. Researchers at Ford’s Cologne, Germany facility have detailed their work to use waste from olive orchards as part of a new biocomposite from the LIVE COMPOLIVE program.

Fibers from the olive tree cuttings are mixed with recycled plastic and injection molded to form panels. The video below features interior panels that are currently made with traditional plastics that could be swapped over to the new composite. Since these cuttings are a waste product from food production, there isn’t the tension akin to that presented via biofuels vs food. We’re curious what Precious Plastics could do with this, especially if the fibers are able to reinforce the matrix.

If you want to see some other unusual uses for waste wood, why not checkout a “paper” bottle or 3D printing with sawdust?

Continue reading “Can Car Parts Grow On Trees?”