Transcribing Piano Rolls With Python

Piano Roll

 

Perforated rolls of paper, called piano rolls, are used to input songs into player pianos. The image above was taken from a YouTube video showing a player piano playing a Gershwin tune called Limehouse Nights. There’s no published sheet music for the song, so [Zulko] decided to use Python to transcribe it.

First off the video was downloaded from YouTube. This video was processed with MoviePy library to create a single image plotting the notes. Using a Fourier Transform, the horizontal spacing between notes was found. This allowed the image to be reduced so that one pixel corresponded with one key.

With that done, each column could be assigned to a specific note on the piano. That takes care of the pitches, but the note duration requires more processing. The Fourier Transform is applied again to determine the length of a quarter note. With this known, the notes can be quantized, and a note duration can be applied to each.

Once the duration and notes are known, it’s time to export sheet music. LilyPond, an open source language for music notation, was used. This converts ASCII text into a sheet music PDF. The final result is a playable score of the piece, which you can watch after the break.

Continue reading “Transcribing Piano Rolls With Python”

Zenotron: The Looks Of A Kaypro II With The Soul Of A Nebulophone

This beautiful instrument of musical delight is called the Zenotron, and it was built by [Mike Walters] for his friend [Zeno] in exchange for some keyboards. The Zenotron is the latest musical hack in a long line of awesome from the same guy who built the Melloman, its successor, the Mellowman II, and Drumssette, a programmable sequencer.

The sweet sounds of those babies all come from tape loops, but the Zenotron is voiced with a modified [Bleep Labs] Nebulophone synthesizer. Instead of the Nebulophone’s pots controlling the waveform and arpeggio, he’s wired up a 2-axis joystick. He left the LFO pot wired as-is. When it’s turned all the way down, he’s noticed that the joystick takes over control of the filter. [Mike] fed the audio through a 4017 decade counter and each of the steps lights up an array of four to five of the randomly-wired 88 LEDs.

[Mike] made the case from the top half of a small filmstrip viewer and an old modem, which is way better than the Cool Whip container housing we made for our Nebulophone. He re-purposed a toy keyboard and made a contact board for it with small tactile switches. This results in nice clicky feedback like you get from mouse buttons.

Of course there’s a demo video. You know the drill.

 

Continue reading “Zenotron: The Looks Of A Kaypro II With The Soul Of A Nebulophone”

Recreating The THX Deep Note

THX logo

Few sounds are as recognizable as the THX Deep Note. [Batuhan] did some research, and set about recreating the sound. The original Deep Note (mp3 link) was created in 1982 by [Dr. James A. Moorer]. [Dr. Moorer] used the Audio Signal Processor (ASP) (AKA SoundDroid) to create the sound. The ASP was a complex machine to program. The Deep Note took about 20,000 lines of C code to program. The C code was compiled to about 250,000 discrete statements to command the ASP.

Only one ASP was ever built, and LucasFilm owned it. Instead of recreating the hardware, [Batuhan] used SuperCollider to recreate the sound. Just like the ASP, SuperCollider is a tool for real-time audio synthesis. The difference is that SuperCollider is open source and runs on modern computers. [Batuhan] used his research and ears to perform an analysis of the Deep Note. He created two re-creations. The first is carefully constructed to replicate the sound. The second is a Twitter worthy 140 character version. Both versions are reasonable facsimiles of the original Deep Note, though they’re not quite perfect to our ears.

[Batuhan] isn’t the only person working on recreations. Deep Note in 1KB of JavaScript can be heard at  http://thx.onekb.net/. We’d love to hear other versions created by Hackaday readers!

[Via Reddit]

Tube Headphones Rock Out While Keeping The Family Peace

tubeHeadphones

It’s hard being a kid sometimes. [Young] likes his music, but his dad is an overnight trucker. With his dad sleeping during the day, [Young] has to keep the volume down to a reasonable level. He could have bought some commercial headphones, but he wanted something a bit more customized. Rather than give up on his tunes, he built a pair of headphones with an internal tube preamp amplifier. [German language link — Google translate doesn’t want to work with this one but Chrome’s translate feature works].

Two 1SH24B preamp tubes feed two LM386 amplifier chips, creating a hybrid amplifier. The 1SH24B tubes are designed to work on battery voltage, so a step up circuit wasn’t necessary. However, [Young] still needed to provide an 8 cell battery pack to run his amp. Speakers were a 3 way coaxial of [Young’s] own design. He built the headphone frame using candy tins and cups from commercial headphones. A final touch was a window so everyone can see all that vacuum state goodness.  Considering that [Young] is only 16, we’re looking for some great things from him in the future.

If you don’t want to strap the tubes to your skull there are other options. But you have to admit it makes for a cool look. Starbucks here we come.

[Thanks Patrick]

3D Printed Instrument Roundup

3d printed instruments

We just stumbled upon a great repository of all musical things that are 3D printed. It’s a wiki dedicated to sharing and recording these 3D printed instruments to help encourage further ideas and projects.

The people maintaining the site find different projects and share them, adding descriptions which would go great into a database search. They explain the type of instrument, it’s history, a picture or video of it and the method of manufacture used to create, whether it be traditional 3D printing, laser cutting, or another process.

Some of our favorites include the 3D printed guitar bodies, the strange looking multi-horn trumpet (that’s the weird one, bottom right) by the MIT Media Lab, and of course the humongous bass recorder (top right).

Stick around after the break for a few videos of these different unconventional, unorthodox instruments!

Continue reading “3D Printed Instrument Roundup”

Rock Out With Your Ribbon Controller Bass

Ribbon-Bass

[Brendan Byrne] stripped this instrument down to basics and built himself a ribbon controller bass guitar. Details are still a bit sparse  on his website, but there are plenty of detailed pictures on his flickr stream. [Brendan] built his bass as part the Future of Guitar Design Course at Parsons the New School for Design. His goal was to create an experience in which playing the instrument and altering parameters of effects are triggered by the same gestures. He’s definitely succeeded in that effort.

Basically, the bass is a four channel ribbon controller. The frets were removed to make way for four graphite strips. [Brendan] followed [Iain’s] excellent tutorial to create his own graphite strips using soft artist’s pencils. The ribbons essentially become potentiometers, which are then read by a teensy. [Brendan] expanded the instrument’s sonic palette by adding several buttons and potentiometers mapped to MIDI control codes. He even included a triple axis accelerometer so every movement of the bass can be mapped. The MIDI data is sent to a PC running commercial music software. Analog sound comes from a piezo pickup placed under the bridge of the bass.

The results are pretty awesome. While we can’t say [Brendan’s] demo was music to our ears, we definitely see the musical possibilities of this kind of instrument.

Continue reading “Rock Out With Your Ribbon Controller Bass”

The Mostly 3D Printed Violin

violin

While Thingiverse is filled with Ocarinas, there’s little in the way of printable instruments for more serious musicians. [David Perry] hopes to change this with the F-F-Fiddle, the mostly 3D printed full-size electric violin.

The F-F-Fiddle is an entry for the LulzBot March 3D Printing Challenge to make a functional, 3D printed musical instrument. Already there are a few very, very interesting submissions like this trombone, but [David]’s project is by far the most mechanically complex; unlike the other wind and percussion instruments found in the contest, there are a log of stresses found in a violin, and printing a smooth, curved fingerboard is quite the challenge.

While there are a few non-printed parts, namely the strings, a drill rod used as a truss rod, some awesome looking tuners, and of course the piezo pickups – the majority of this violin, including the bridge, is 3D printed. It’s an amazing piece of work, and after listening to the video (below), sounds pretty good too.

You can grab all the files on Thingiverse and read up on the build at Openfab PDX.

 

Continue reading “The Mostly 3D Printed Violin”