Ondophone On Point

The name Ondophone is a mash-up of two instruments, the Marxophone, and the ondes martenot. From the Marxophone, [Wintergatan] borrows the spring-loaded hammers, which repeatedly strike a string once activated. The ondes martenot loans its Theremin-like sound and ability to lean back on western semi-tone notes. Mating such different instruments requires a team, and much like the name, it produces a splendid blend.

At the left-hand side of the Ondophone, we see the spring-hammer battering away on a steel string whenever the neck moves up or down. Next to it is an Ebow that vibrates a string with an electromagnet and can maintain a note so long as it has power. Hidden within the neck are magnets to demarcate semi-tone locations, so it’s possible to breeze past them for a slide sound or rest on them to follow a tune.

The combination of intermittent hammering and droning lends well to the “creepy” phase of the song, which leads segues to the scope-creep that almost kept this prototype on the drawing board. The video talks about all the things that could have been done with this design, which is a pain/freedom we know well. KISS that Ondophone headline act goodbye.

The ondes martenot is an early electronic instrument, so we’ve some high-tech iterations, and if you haven’t heard what’s possible with a DIY Ebow, we will harp on you.

Continue reading “Ondophone On Point”

Open-Source Medical Devices Hack Chat

Join us on Wednesday, January 29 at noon Pacific for the Open-Source Medical Devices Hack Chat with Tarek Loubani!

In most of the developed world, when people go to see a doctor, they’re used to seeing the latest instruments and devices used. Most exam rooms have fancy blood pressure cuffs, trays of shiny stainless steel instruments, and a comfortable exam table covered by a fresh piece of crisp, white paper. Exams and procedures are conducted in clean, quiet places, with results recorded on a dedicated PC or tablet.

Such genteel medical experiences are far from universal, though. Many clinics around the world are located in whatever building is available, if they’re indoors at all. Supplies may be in chronically short supply, and to the extent that the practitioners have the instruments they need to care for patients, they’ll likely be older, lower-quality versions.

Tarek Loubani is well-versed in the practice of medicine under conditions like these, as well as far worse situations. As an emergency physician and researcher in Canada, he’s accustomed to well-appointed facilities and ample supplies. But he’s also involved in humanitarian relief, taking his medical skills and limited supplies to places like Gaza. He has seen first-hand how lack of the correct tools can lead to poor outcomes for patients, and chose to fight back by designing a range of medical devices and instruments that can be 3D-printed. His Glia Project has free plans for a high-quality stethoscope that can be built for a couple of dollars, otoscopes and pulse oximeters, and a range of surgical tooling to make the practice of medicine under austere conditions a little easier. Continue reading “Open-Source Medical Devices Hack Chat”

Open-Source Analytical Balance Pits Gravity Against Electromagnetism

As the open-source movement has brought its influence to more and more fields, we’ve seen an astonishing variety of things once only available at significant expense become accessible to anyone with access to the tools required to create them. One such arena is that of scientific instrumentation, and though we have seen many interesting developments there has been one which has so far evaded us. An analytical balance, a very specialised weighing machine designed to measure the tiniest of masses, remains available only as a new unit costing a fortune, or as a second-hand one with uncertain history and possible contamination. Fortunately, friend of Hackaday [Zach Fredin] is on the case, and as part of one of his MIT courses he chose to create an open-source analytical balance.

The write-up is interspersed with his course notes as he learns a series of fabrication techniques, but in addition to the milled Delrin finished model he treats us to his prototype and gives us an explanation of how these instruments work. It’s a technique that’s rather different to a traditional weighing machine: instead of measuring deformation of a spring in some way it produces a force from an electromagnet to oppose that exerted by gravity on the mass to be measured, and quantifies how much electrical energy is required to do that. The mechanism incorporates feedback through a vane and an optical sensor, which he admits he’s not yet had time to set up properly.

It’s an interesting project not least because it exposes some of the inner workings of an analytical balance, and we look forward to his completing it. If this whet your appetite for the topic it’s worth also looking at [Ben Krasnow’s] video of a balance made using a moving coil meter for an explanation of the technique.

When Toothbrushes, Typewriters, And Credit Card Machines Form A Band

Many everyday objects make some noise as a side effect of their day job, so some of us would hack them into music instruments that can play a song or two. It’s fun, but it’s been done. YouTube channel [Device Orchestra] goes far beyond a device buzzing out a tune – they are full fledged singing (and dancing!) performers. Watch their cover of Take on Me embedded after the break, and if you liked it head over to the channel for more.

The buzz of a stepper motor, easily commanded for varying speeds, is the easiest entry point into this world of mechanical music. They used to be quite common in computer equipment such as floppy drives, hard drives, and flatbed scanners. As those pieces of equipment become outdated and sold for cheap, it became feasible to assemble a large number of them with the Floppotron being something of a high-water mark.

After one of our more recent mentions in this area, when the mechanical sound of a floppy drive is used in the score of a motion picture, there were definite signs of fatigue in the feedback. “We’re ready for something new” so here we are without any computer peripherals! [Device Orchestra] features percussion by typewriters, vocals by toothbrushes, and choreography by credit card machines with the help of kitchen utensils. Coordinating them all is an impressive pile of wires acting as stage manager.

We love to see creativity with affordable everyday objects like this. But we also see the same concept done with equipment on the opposite end of the price spectrum such as a soothing performance of Bach using the coils of a MRI machine.

[Thanks @Bornach1 for the tip]

Continue reading “When Toothbrushes, Typewriters, And Credit Card Machines Form A Band”

Forming Fipples And Accompanying Accoutrements

[Dr. Suess] created memorable books with minimal words and bright artwork. He inspired children and adults alike, and one of them, [Len], grew up to create wind instruments for the Bellowphone channel on YouTube. Behind the whimsy of his creations is significant engineering, and this time, we get to see the construction of a fipple. The video is also shown after the break. Even though fipple sounds like a word [Dr. Suess] would have coined, it is a legitimate musical term that means a whistle-like mouthpiece. In this case, it blows air across glass jars to create the sound for [Len]’s bottle organ. Check out the second video below for a performance from The Magic Flute.

[Len] uses clear rigid PVC for the fipples and a custom forming die to shape them while they are soft. The rest is precision hand-tool work with a razor saw, hand file, and wet-dry sandpaper. Once complete, the fipple looks like any musical instrument part produced by exacting construction techniques. Making a mouthpiece is one thing, but if it is not directed correctly it will not make any sound, so we also learn how to turn steel strapping into an organ bottle assembly. If you add some tubing and rubber squeeze balls, you can make your own instrument.

Part of the reason the Bellowphone channel exists is that [Len] found a lot of support in the pipe organ community that showed him the secret inner workings of their livelihood and now is his chance to share that enthusiasm with the maker community.

Continue reading “Forming Fipples And Accompanying Accoutrements”

Creating A Sonic Landscape With Glitching CD Player

CDs were a great advancement in audio quality when they were first put on the market. There’s no vinyl-style degradation of the medium if it’s played over and over, and there’s no risk of turning them into a giant pile of ribbon while rewinding like a cassette tape. The one downside was that if you were to take them on the move you needed special hardware and software to prevent the inevitable skipping. If you look at the skipping not as a downside, though, but as a way to produce interesting music, you might end up with a pretty unique piece of hardware.

[Dmitry] is known for his interesting art installations, and the latest one uses parts from three 1988 Sony D2 CD players that have been reassembled in order to take advantage of a skipping and glitching CD. The modified equipment is able to play during pause or rewind thanks to a processor modification, and can also change the rotational speed of the disc. There are other pieces of hardware included for more fine control of glitching and skipping of the audio being read off of the CD.

The new device functions as a working musical instrument, although [Dmitry] says that it is more useful for deconstructing the information stored on the disc, and exploring the medium itself. Of course if you have enough motivation, you can find sounds from almost anywhere on (or in) the planet too.

A Scratch Instrument For Ants

If you think that this scratch instrument looks as though it should be at least… three times larger in order to be useful, you’d be wrong. This mighty pocket-sized instrument can really get the club hopping despite its diminuitive size. Despite that, the quality of the build as well as its use of off-the-shelf components for almost every part means that if you need a small, portable turntable there’s finally one you can build on your own.

[rasteri] built the SC1000 digital scratch instrument as a member of the portabilist scene, focusing on downsizing the equipment needed for a proper DJ setup. This instrument uses as Olimex A13-SOM-256 system-on-module, an ARM microprocessor, and can use a USB stick in order to load beats to the system. The scratch wheel itself uses a magnetic rotary encoder to sense position, and the slider is miniaturized as well.

If you want to learn to scratch good and learn to do other things good too, there’s a demo below showing a demonstration of the instrument, as well as a how-to video on the project page. All of the build files and software are open-source, so it won’t be too difficult to get one for yourself as long as you have some experience printing PCBs. If you need the rest of the equipment for a DJ booth, of course that’s also something you can build.

Continue reading “A Scratch Instrument For Ants”