Rendering of 6-unit NuScale VOYGR SMR plant.

Utah NuScale Nuclear Plant Project Canceled Due To Lack Of Interest From Utilities

Intended to be the first 6-unit deployment of NuScale’s 77 MW VOYGR small modular reactors (SMRs), the Carbon Free Power Project (CFPP) in Utah was scheduled to begin construction by 2025 on the grounds of the Idaho National Laboratory (INL), yet it has now been canceled by NuScale (press release) after not finding enough utilities interested in purchasing power from the nuclear plant. This led NuScale and UAMPS (Utah Associated Municipal Power Systems) to back out of the CFPP project.

To be clear, it seems this decision neither reflects on SMRs as a whole, nor NuScale’s prospects. Currently NuScale still has a number of projects which it is involved in, including the use of its SMR technology with the Polish copper and silver producer KGHM Polska Miedź SA. Demand for SMRs is also being flooded with various designs by both established and start-up companies, with TerraPower’s Natrium reactor seeing additional demand, including at the Kemmerer site in Wyoming.

Meanwhile, the European Commission is establishing an SMR Industrial Alliance, and countries like Norway are looking to build their first nuclear plants using SMRs, which includes Danish Seaborg’s molten salt reactor. In the end it should be clear that whether a singular infrastructure project works out economically or not depends on many factors. This can also be seen with e.g. wind farm projects, where Danish Ørsted canceled two large US offshore wind projects, Swedish Vattenfall abandoned its new British offshore wind project due to rising costs and Siemens Energy is having to borrow billions of Euros to patch up financial holes in its Spanish wind turbine unit.

Continue reading “Utah NuScale Nuclear Plant Project Canceled Due To Lack Of Interest From Utilities”

Fastest Semiconductor May Also Be Most Expensive

Scientists have found what they think may be the fastest known semiconductor. Sounds great, right? But it happens to made from one of the rarest elements: rhenium. That rare element combines with selenium and chlorine to form a “superatom.” Unlike conventional semiconductor material, the superatom causes phonons to bind together and resist scattering. This should allow materials that can process signals in femtoseconds,

Rhenium was the last stable element to be found in 1925. It is primarily used in combination with nickel in parts of jet engines, although it is also known as a catalyst for certain reactions. It is very rare and has a high melting point, exceeded only by tungsten and carbon. When it was discovered, scientists extracted a single gram of the material by processing 660 kg of molybdenite. Because of its rarity, it is expensive, costing anywhere from $2,800 to $10,600 per kilogram.

Continue reading “Fastest Semiconductor May Also Be Most Expensive”

Apple System 7… On Solaris?

While the Unix operating systems Solaris and HP-UX are still in active development, they’re not particularly popular anymore and are mostly relegated to some enterprise and data center environments They did enjoy a peak of popularity in the 90s during the “wild west” era of windowed operating systems, though. This was a time when there were more than two mass-market operating systems commercially available, with many companies fighting for market share. This led to a number of efforts to get software written for one operating system to run on others, whether that was simply porting software directly or using some compatibility layer. Surprisingly enough it was possible in this era to run an entire instance of Mac System 7 within either of these two Unix operating systems, and this was an officially supported piece of Apple software.

The software was called the Macintosh Application Environment (MAE), and was an effort by Apple to bring Macintosh System 7 applications to various Unix-based operating systems, including Solaris and HP-UX. This was a time before Apple’s OS was Unix-compliant, and MAE provided a compatibility layer that translated Macintosh system calls and application programming interfaces (APIs) into the equivalent Unix calls, allowing Mac software to function within the Unix environments. [Lunduke] outlines a lot of the features of this in his post, including some of the details the “scaffolding” allowing the 68k processor to be emulated efficiently on the hardware of the time, the contents of the user manual, and even the memory management and layout.

What’s really jarring to anyone only familiar with Apple’s modern “walled garden” approach is that this is an Apple-supported compatibility layer for another system. At the time, though, they weren’t the technology giant they are today and had to play by a different set of rules to stay viable. Quite the opposite, in fact: they almost went out of business in the mid-90s, so having their software run on as many machines as possible would have been a perk at the time. While this era did have major issues with cross-platform compatibility, there was some software that attempted to solve these problems that are still in active development today.

Thanks to [Stephen] for the tip!

Trouble Brewing For RISC-V As Issue Of Technology Transfer Is Questioned

Within the messy world of international politics, a major consideration by governments concerns which types of kn0w-how and technology can be transferred and sold to other nations, with each type facing restrictions depending on how friendly the political relations are with the target country at that point in time. Amidst all of this, there are signs that a so far relatively minor player in the world of CPU instruction set architectures – RISC-V – may become a victim of this, as a bipartisan group of US politicians is petitioning the White House to restrict transfer of know-how (so-called Intellectual Property, or IP) to RISC-V, as this may benefit adversaries like China.

As a US citizen who is involved in the RISC-V ecosystem, [Andrew ‘bunnie’ Huang] feels rather strongly about this, and has written an open letter to the US President, pleading to not restrict the way that US citizens can deal with the Switzerland-based RISC-V organization. This comes as the California-based RISC-V startup SiFive has announced that it’ll lay off 20% of its workforce. Depending on how a restriction on RISC-V is implemented, this could mean that US citizens would be forbidden from contributing to this ISA and surrounding ecosystem.

China has made it clear that RISC-V is a big part of its strategy to loosen its dependence on the West along with its investments in its MIPS-based Loongson processors, all of which strengthens the case for restricting US participation in RISC-V, even if it forces US companies like SiFive to move countries or cease its operations.

(Thanks to [cbjamo] for the tip)

3D printed ring with 4-integrated electrodes for measuring bioimpedance for measuring blood pressure from the finger

Smart Ring Measures Blood Pressure

Continuous blood pressure monitoring has always been a major challenge for the biohacking community. Those giant arm cuffs aren’t exactly the kind of thing you want to wear all day and the wrist monitors aren’t super great either. So, [Kaan] and his research team set out to create a better continuous blood pressure monitor. This time as a ring.

When your heart beats, the volume of blood in the blood vessels increases ever so slightly. This increase in volume results in a decrease in electrical impedance because blood is fairly conductive. We’ve seen a similar volume measurement using light for detecting heart rate, but [Kaan] says with impedance, you won’t need to worry about the effect of skin tone on the accuracy of the measurement.

As far as the hardware is concerned, they inject a small, constant 10 kHz sinusoidal current into the finger through 2 current-injecting electrodes, and then measure the resulting voltage drop across the finger with two sensing electrodes, a standard 4-probe Kelvin approach. Their results seem pretty good. They are within 5.27 millimeters of mercury (mmHg) of the gold standard for systolic blood pressure and 3.87 mmHg for diastolic blood pressure across 10 subjects, which they say are within the American Association for the Advancement of Medical Instrumentation’s (AAMI) guidelines. That’s definitely something to catch your attention.

We’ve seen several attempts to measure blood pressure using the analogous photoplethysmography technique, but those generally don’t seem to work out. Will the impedance plethysmography approach overcome the optical technique’s shortcomings? Only time will tell.

Virginia To Get Large-Scale Wind Farm

If you go about 27 miles off the coast of Virginia, you’ll find two windmills jutting up out of the sea. Two windmills aren’t particularly interesting until you realize that these two are on the edge of a 2,100-acre lease that Dominion Energy is placing in Federal water. According to the company, those two will be joined by 176 more windmills on a nearly 113,000-acre adjacent lease. The project has been in the planning and pilot phase for a while, but it was recently given the green light by the US government. You can see a promotional video about the project below. There’s also a video of the first monopiles — the mounts for the windmills — arriving in the area.

The project will eventually have three offshore substations that feed the power to the state military reservation and, from there, to Naval Air Station Oceania, where it feeds the commercial power grid. The final project will power 660,000 homes.

Continue reading “Virginia To Get Large-Scale Wind Farm”

Supercon 2023 Is On: Live

Supercon is in full swing! If you weren’t able to join us in person, we’re streaming the main stage and you should absolutely check out the talks as they happen.

The full schedule is here, and you’ll find all the streams over on our YouTube channel. Come join in the fun.

For those of you are here with us in Pasadena, we’ve got a signup form for anyone who wants to submit a Lightening Talk for Sunday.

Hint: absolutely don’t miss Cory Doctorow’s keynote speech, taking place at 10:00 AM Pacific.