Personalization, Industrial Design, And Hacked Devices

[Maya Posch] wrote up an insightful, and maybe a bit controversial, piece on the state of consumer goods design: The Death Of Industrial Design And The Era Of Dull Electronics. Her basic thesis is that the “form follows function” aesthetic has gone too far, and all of the functionally equivalent devices in our life now all look exactly the same. Take the cellphone, for example. They are all slabs of screen, with a tiny bezel if any. They are non-objects, meant to disappear, instead of showcases for cool industrial design.

Of course this is an extreme example, and the comments section went wild on this one. Why? Because we all want the things we build to be beautiful and functional, and that has always been in conflict. So even if you agree with [Maya] on the suppression of designed form in consumer goods, you have to admit that it’s not universal. For instance, none of our houses look alike, even though the purpose is exactly the same. (Ironically, architecture is the source of the form follows function fetish.) Cars are somewhere in between, and maybe the cellphone is the other end of the spectrum from architecture. There is plenty of room for form and function in this world.

But consider the smartphone case – the thing you’ve got around your phone right now. In a world where people have the ultimate homogeneous device in their pocket, one for which slimness is a prime selling point, nearly everyone has added a few millimeters of thickness to theirs, aftermarket, in the form of a decorative case. It’s ironically this horrendous sameness of every cell phone that makes us want to ornament them, even if that means sacrificing on the thickness specs.

Is this the same impetus that gave us the cyberdeck movement? The custom mechanical keyboard? All kinds of sweet hacks on consumer goods? The need to make things your own and personal is pretty much universal, and maybe even a better example of what we want out of nice design: a device that speaks to you directly because it represents your work.

Granted, buying a phone case isn’t necessarily creative in the same way as hacking a phone is, but it at least lets you exercise a bit of your own design impulse. And it frees the designers from having to make a super-personal choice like this for you. How about a “nothing” design that affords easy personalized ornamentation? Has the slab smartphone solved the form-versus-function fight after all?

Trickle Down: When Doing Something Silly Actually Makes Sense

One of the tropes of the space race back in the 1960s, which helped justify the spending for the part of the public who thought it wasn’t worth it, was that the technology developed for use in space would help us out here back on earth. The same goes for the astronomical expenses in Formula 1, or even on more pedestrian tech like racing bikes or cinematography cameras. The idea is that the boundaries pushed out in the most extreme situations could nonetheless teach us something applicable to everyday life.

This week, we saw another update from the Minuteman project, which is by itself entirely ridiculous – a 3D printer that aims to print a 3D Benchy in a minute or less. Of course, the Minuteman isn’t alone in this absurd goal: there’s an entire 3D printer enthusiast community that is pushing the speed boundaries of this particular benchmark print, and times below five minutes are competitive these days, although with admittedly varying quality. (For reference, on my printer, a decent-looking Benchy takes about half an hour, but I’m after high quality rather than high speed.)

One could totally be forgiven for scoffing at the Speed Benchy goal in general, the Minuteman, or even The 100, another machine that trades off print volume for extreme speed. But there is definitely trickle-down for the normal printers among us. After all, pressure advance used to be an exotic feature that only people who were using high-end homemade rigs used to care about, and now it’s gone mainstream. Who knows if the Minuteman’s variable temperature or rate smoothing, or the rigid and damped frames of The 100, or its successor The 250, will make normal printers better.

So here’s to the oddball machines, that push boundaries in possibly ridiculous directions, but then share their learnings with those of us who only need to print kinda-fast, but who like to print other things than little plastic boats that don’t even really float. At least in the open-source hardware community, trickle-down is very real.

Dearest C++, Let Me Count The Ways I Love/Hate Thee

My first encounter with C++ was way back in the 1990s, when it was one of the Real Programming Languages™ that I sometimes heard about as I was still splashing about in the kiddie pool with Visual Basic, PHP and JavaScript. The first formally standardized version of C++ is the ISO 1998 standard, but it had been making headways as a ‘better C’ for decades at that point since Bjarne Stroustrup added that increment operator to C in 1979 and released C++ to the public in 1985.

Why did I pick C++ as my primary programming language? Mainly because it was well supported and with free tooling: a free Borland compiler or g++ on the GCC side. Alternatives like VB, Java, and D felt far too niche compared to established languages, while C++ gave you access to the lingua franca of C while adding many modern features like OOP and a more streamlined syntax in addition to the Standard Template Library (STL) with gobs of useful building blocks.

Years later, as a grizzled senior C++ developer, I have come to embrace the notion that being good at a programming language also means having strong opinions on all that is wrong with the language. True to form, while C++ has many good points, there are still major warts and many heavily neglected aspects that get me and other C++ developers riled up.

Continue reading “Dearest C++, Let Me Count The Ways I Love/Hate Thee”

Limitations, Creativity, And Challenges

This week, we announced the winners for the previous Pet Hacks contest and rang in our new contest: The One Hertz Challenge. So that’s got me in a contesty mood, and I thought I’d share a little bit of soap-box philosophizing and inside baseball all at once.

The trick to creating a good contest theme, at least for the creative Hackaday crowd, is putting on the right limitation. Maybe you have to fit the circuit within a square-inch, power it only with a coin cell, or use the antiquated and nearly useless 555 timer IC. (Yes, that was a joke!)

There are two basic reactions when you try to constrain a hacker. Some instantly try to break out of the constraint, and their minds starts to fly in all of the directions that lead out of the box, and oftentimes, something cool comes out of it. The other type accepts the constraint and dives in deep to work within it, meditating deeply on all the possibilities that lie within the 555.

Of course, we try to accommodate both modes, and the jury is still out as to which ends up better in the end. For the Coin Cell challenge, for instance, we had a coin-cell-powered spot welder and car jumpstarter, but we also had some cool circuits that would run nearly forever on a single battery; working against and with the constraints.

Which type of hacker are you? (And while we’re still in the mood, what contest themes would you like to see for 2026?)

The Tao Of Bespoke Electronics

If you ever look at projects in an old magazine and compare them to today’s electronic projects, there’s at least one thing that will stand out. Most projects in “the old days” looked like something you built in your garage. Today, if you want to make something that rivals a commercial product, it isn’t nearly as big of a problem.

Dynamic diode tester from Popular Electronics (July 1970)

For example, consider the picture of this project from Popular Electronics in 1970. It actually looks pretty nice for a hobby project, but you’d never expect to see it on a store shelf.

Even worse, the amount of effort required to make it look even this good was probably more than you’d expect. The box was a standard case, and drilling holes in a panel would be about the same as it is today, but you were probably less likely to have a drill press in 1970.

But check out the lettering! This is a time before inkjet and laser printers. I’d guess these are probably “rub on” letters, although there are other options. Most projects that didn’t show up in magazines probably had Dymo embossed lettering tape or handwritten labels.

Continue reading “The Tao Of Bespoke Electronics”

Measurement Is Science

I was watching Ben Krasnow making iron nitride permanent magnets and was struck by the fact that about half of the video was about making a magnetometer – a device for measuring and characterizing the magnet that he’d just made. This is really the difference between doing science and just messing around: if you want to test or improve on a procedure, you have to be able to measure how well it works.

When he puts his home-made magnet into the device, Ben finds out that he’s made a basically mediocre magnet, compared with samples out of his amply stocked magnet drawer. But that’s a great first data point, and more importantly, the magnetometer build gives him a way of gauging future improvements.

Of course there’s a time and a place for “good enough is good enough”, and you can easily spend more time building the measurement apparatus for a particular project than simply running the experiment, but that’s not science. Have you ever gone down the measurement rabbit hole, spending more time validating or characterizing the effect than you do on producing it in the first place?

My Winter Of ’99: The Year Of The Linux Desktop Is Always Next Year

Growing up as a kid in the 1990s was an almost magical time. We had the best game consoles, increasingly faster computers at a pace not seen before, the rise of the Internet and World Wide Web, as well the best fashion and styles possible between neon and pastel colors, translucent plastic and also this little thing called Windows 95 that’d take the world by storm.

Yet as great as Windows 95 and its successor Windows 98 were, you had to be one of the lucky folks who ended up with a stable Windows 9x installation. The prebuilt (Daewoo) Intel Celeron 400 rig with 64 MB SDRAM that I had splurged on with money earned from summer jobs was not one of those lucky systems, resulting in regular Windows reinstalls.

As a relatively nerdy individual, I was aware of this little community-built operating system called ‘Linux’, with the online forums and the Dutch PC magazine that I read convincing me that it would be a superior alternative to this unstable ‘M$’ Windows 98 SE mess that I was dealing with. Thus it was in the Year of the Linux Desktop (1999) that I went into a computer store and bought a boxed disc set of SuSE 6.3 with included manual.

Fast-forward to 2025, and Windows is installed on all my primary desktop systems, raising the question of what went wrong in ’99. Wasn’t Linux the future of desktop operating systems?

Continue reading “My Winter Of ’99: The Year Of The Linux Desktop Is Always Next Year”