Soccer Playing Robots Score On Human Goalie!

Soccer robot scores on humans

Did you know there’s a rather large community dedicated to making robots that can play soccer? Did you know they’re getting pretty good?

RoboCup is an international robotics competition held annually, first founded in 1997. The goal first and foremost is to promote robotics and AI research — and to do so, they decided to make the competition something that is publicly appealing — Why not one of the most popular sports around? The official goal of the project is to have a team of autonomous humanoid based robot players beat the most recent winning team of the World Cup, complying with the official rules of FIFA. This year, the RoboCup coincided with the real World Cup, and was hosted in Brazil.

There are several categories in RoboCup with various types of robots, and the mid-size team did pretty well this year.

Arguably, this is the most exciting game of all, because it gives a sense of what the current state-of-the-art in robotic soccer is, and how it stacks up to a team of moderately talented squishy bipeds.

We guess that’s a nice way of saying “non-professional soccer players”. Regardless though, they SCORED!

Continue reading “Soccer Playing Robots Score On Human Goalie!”

The RC White House Robot

IMG_20140726_124812_164

This remote controlled, Arduino-based robot was created by a young student named [Quin] who likes to teach electronics classes at hackerspaces. It is an adaptation of this awesome, fast, fully autonomous mini Roomba that has since driven its way into the Presidential building during the 1st ever White House Maker Faire.

The quick, little device uses a robot chassis kit with an XBee wireless module so that the controller and the robot can be connected together. An NFC Shield was hacked and split in half so that the wires could be soldered in place.

[Quin]’s goal was to develop a fun game that records the number of times the robot drives over NFC tags laid across a flat surface. Points are shown in the form of blinking lights that illuminate when the device goes over the sensors, keeping track of the score.

The controller container was made with an open source 3D printer called a Bukobot. The enclosure holds an Arduino and another XBee shield along with a joystick and a neopixel ring, giving it a nice polished look complete with a circle of beautiful, flashing LED’s.

Continue reading “The RC White House Robot”

A New Approach To Robotic Walking Looks More Like Kinetic Art

Flipping Robot

Here’s a really cool application of 3D printing and robotics by a fellow named [Maundy] – He’s created a very unique kinetic robot which relies on gravity to walk around.

All the electronics are housed in the cylinder as shown above. It can roll freely back and forth by some kind of mechanism inside (not shown), but the beauty of it is, when the cylinder rolls to one end, gravity takes over and the little robot actually flips through the air, reorienting itself onto its other feet.

Due to the flipping nature of the bot, it can even climb over small obstacles with ease – but this one can’t steer, so there’s no threat of them taking over the world. Perhaps with a modification to the control cylinder (turn it into a ball), the robot could orientate itself vertically, and then kind of spin in place in order to steer…

Anyway, you have to see it to believe it, so stick around after the break to see it in action!

Continue reading “A New Approach To Robotic Walking Looks More Like Kinetic Art”

What Could You Do With 7 Fingers?

7 finger robotic glove

A strange thought yes, but MIT researchers think an extra two digits could really make a difference in many people’s lives. And as it turns out, having an extra robotic grasp allows you to do quite a few things single handed.

The extra two fingers provide three degrees of freedom each, and are mounted off the user’s wrist. A series of position recording sensors attached to the glove provide feedback to the system in order to control the fingers naturally, just by using your hand normally.

They taught the algorithm that controls the fingers by trying to pick up different (large) items using the hand and manually positioning the fingers. What they discovered is almost every grasp could be demonstrated as a combination of only 2-3 grip patterns.  Continue reading “What Could You Do With 7 Fingers?”

Cutting Ribbons With Robots And A Oculus Rift

PR2-GrandOpening

On June 26th, 2014, Clearpath Robotics opened up the doors to their brand new 12,000 square foot robot lair by bringing out a PR2 to cut the ceremonial ribbon and welcome everyone inside. And instead of just programming the ‘locate and destroy’ ribbon sequence, the co-founders opted to use an Oculus Rift to control the robot tearing through the material with flailing arms.

This was accomplished having Jake, the robot, utilize a Kinect 2.0 that fed skeleton tracking data via rosserial_windows, a windows-based set of extension for the Robot Operating System which we heard about in January. The software gathers in a stream of data points each with an X,Y,Z component allowing [Jake] to find himself within a 3D space.Then, the data was collected and published directly into the PR2’s brain. Inject a little python code, and the creature was able to route directions in order to move it’s arms.

Thus, by simply stepping in front of the Kinect 2.0, and putting on the Oculus Rift headset, anyone could teleoperate [Jake] to move around and wave its arms at oncoming ribbons. Once completed, [Jake] would leave the scene, journeying back into the newly created robot lair leaving pieces of nylon and polyester everywhere.

An earlier (un-smoothed) version of the full system can be seen after the break:

Continue reading “Cutting Ribbons With Robots And A Oculus Rift”

Roboceratops: A Robot Dinosaur That Defies Extinction

roboceratopsInspired by a childhood love of dinosaurs, [Robert] set out to build a robotic dinosaur from the Ceratopsian family. After about a year of design, building, and coding, he has sent us a video of Roboceratops moving around gracefully, chomping a rope, and smoothly wagging his tail.

Roboceratops is made from laser-cut MDF and aluminium bars in the legs. That’s not cookie dough on those legs, it’s upholstery foam, and we love the way [Robert] has shaped it. Roboceratops has servos in his jaw, neck, tail, and legs for a total of 14-DOF. You can see the servo specifics and more in the video description. [Robert] has full kinematic control of him through a custom controller and is working to achieve total quadrupedal locomotion.

Inside that custom controller is an Arduino Mega 2560, an LCD, and two 3-axis analog joysticks that control translation, height, yaw, pitch, and jaw articulation. For now, Roboceratops receives power and serial control through a tether, but [Robert] plans to add an on-board µC for autonomous movement as well as wireless, a battery, an IMU, and perhaps some pressure/contact detection in his feet.

The cherry on top of this build is the matching, latching custom carry case that has drawers to hold the controller, power supply, cable, tools, and spare parts. Check out Roboceratops after the break.

Continue reading “Roboceratops: A Robot Dinosaur That Defies Extinction”

Marvin’s Marvelous Mechanical Museum

Don’t call it an arcade. There are arcade-like things about it… like dance-based video games, Skee-ball, and tickets — oh so many tickets. But Marvin’s Marvelous Mechanical Museum is a one-of-a-kind that you need to visit next time you’re in the North suburbs of Detroit, Michigan.

[Marvin] was there in person, as he is many days. He talked with us for a few minutes and we’ve folded his interview, along with footage of many of the attractions, into the video above.

He’s been collecting for more than three decades. The attractions are packed into every bit of floor space, spilling up onto the walls, and hanging from every spot in the ceiling. There are true antiques from both home and abroad that could be referred to as automatons, rows of fortune tellers, a track of large airplane models that make a loop around the establishment when fed a quarter, and much more.

Some of the attractions were build for him, like the robot band you can make out behind [Marvin] during the interview. It is a MIDI-based build that allows songs to be selected from a touchscreen. Soon to be on exhibit is a Tesla-coil-based offering which [Marvin] commissioned after taking second place to [Nicolai Tesla] on a list of oddest museums.

Continue reading “Marvin’s Marvelous Mechanical Museum”