Robot Trash Can Catches Anything You Throw Near It

This guy is about to toss the blue ball half way between the book shelf and the waste basket. By the time it gets there the waste basket will have moved into position to catch the ball perfectly. It’ll do the same for just about anything you throw.

We’re unable to read the captions but it looks like this may have been made as part of a commercial which is shown in the first few seconds of the video after the break. From there we see the development of a locomotive mechanism which will fit into the bottom of the bin. It start as a single swivel wheel, but gets more complicated quite quickly. Once the low-profile three-wheeler is milled and assembled it’s time to start writing the code to translate input from a Kinect 3D camera and extrapolate the position for catching the trash. The final result seems to do this perfectly.

Continue reading “Robot Trash Can Catches Anything You Throw Near It”

Self Balancing Robot Uses Cascading PID Algorithms

At this point we’re beginning to think that building a self-balancing robot is one of the rights of passage alongside blinking some LEDs and writing Hello World on an LCD screen. We’re not saying it’s easy to pull off a build like this one. But the project makes you learn a lot about a wide range of topics, and really pushes your skills to the next level. This latest offering comes from [Sebastian Nilsson]. He used three different microcontrollers to get the two-wheeler to stand on its own.

He used our favorite quick-fabrication materials of threaded rod and acrylic. The body is much taller than what we’re used to seeing and to help guard against the inevitable fall he used some foam packing material to protect the top level. Three different Arduino boards are working together. One monitors the speed and direction of each wheel. Another monitors the IMU board for position and motion feedback, and the final board combines data from the others and takes care of the balancing. Two PID algorithms provide predictive correction, first by analyzing the wheel motion, then feeding that data into the second which uses the IMU feedback. It balances very well, and can even be jostled without falling. See for yourself in the clip after the break.

Continue reading “Self Balancing Robot Uses Cascading PID Algorithms”

Building An Autonomous Robot From An Xbox 360 Controller

Wow, it’s amazing what [Carl] was able to build using an Xbox 360 control PCB as the base for his robot. His forum posts just touches the surface of the build, but he linked to a PDF file which has the full details.

This build basically attaches sensors and replacement motors to the controller board… and that is it! Some distance sensors are connected to the analog inputs for the left and right trigger. The whiskers use a couple of leaf switches soldered to controller button pads. The motors are geared replacements that use the same connectors as the rumble motors did.

The idea is that the controller is connected to a PC via the wireless radio it has on the PCB. Once the connection is made the PC software can read from all of the sensors and drive the motors accordingly. It would also be really easy to use a single-board solution like the RPi to do away with the need for a remote PC. But this is a fantastic start, and an approach which we had never before considered. See some video of the little guy getting around the room after the break.

Continue reading “Building An Autonomous Robot From An Xbox 360 Controller”

RC PVC Bot

This hunk of PVC pipe is radio controlled. The wheels on the ends provide the locomotion, but it wouldn’t be going anywhere if it weren’t for that little tail strapped to the center of the tube.

When the motors are turning the body of the bot needs something to push against. In this case the tail hits the ground and keeps the chassis from spinning. We have seen attempts to go without a tail by using lopsided wheels to provide angular momentum, but this method is much more reliable.

The control for the bot is scrapped from a toy RC car. Once hooked up to the gearhead motors it’s ready to roll. The real difficulty of the build came in fitting everything into the pipe. A frame was built from a few disks used as mounting platforms which were separated by threaded rod. See it making its way around a gravel road in the clip after the break.

Continue reading “RC PVC Bot”

GSM Controlled Car Without Needing A Microcontroller

Nope, no microcontroller here, just a full-blown cellphone used as the brains of this little robot. The secret behind how it works is in the sounds the phone makes. The touch tones, known as DTMF, are monitored by the circuit mounted on the front half of the chassis and are responsible for driving the motors.

[Achu Wilson] built the circuit around an MT8870 chip which decodes the DTMF sounds and uses the BCD output to feed some logic chips. A 4 line to 16 line decoder and an inverter chip format the signals for use as inputs to the L293D motor driver. The video after the break shows him driving the rover directly by pressing number on the phone (like a tethered remote control). But he mentions that it’s possible to call the phone and press the numbers remotely. We assume you need to connect the call manually as we see no way to automatically answer calls.

This is certainly a fun way to play around with the DTMF protocol.

Continue reading “GSM Controlled Car Without Needing A Microcontroller”

Cool Master Advanced Beer Delivery System

The Cool Master is a beer delivery system which Innovation Thirst built as their qualifying entry for this year’s Red Bull Creation contest. It’s one of the best beer delivery concepts we’ve ever seen. Instead of tossing you a beer directly from the fridge, this offering brings the cold beverages directly to you. It even manages to de-cap the bottles before serving.

Mobility is provided by a six-wheeled base which allows for a zero-turn radius. The cooler acts as the body of the robot, and hides a hopper which carries a stock of bottles on their sides. When you want a beer, the bot approaches you, tilts the next bottle to the upright position, removes the cap, then raises the vessel on a beer elevator until it pushes its way through the rubber orifice in the cooler’s lid. Right now the device is operated using an RC controller, but there’s always room for adding autonomy and the ability to restock from a refrigerator. Don’t miss the demo video after the break.

Continue reading “Cool Master Advanced Beer Delivery System”

Arduino Rover Evolves To A Trike Design

[Eduard Ros] wrote in to show off the latest version of his Arduino powered autonomous rover (translated). You may remember seeing the first version of the build back in June. It started with a remote control truck body, adding an Arduino and some ultrasonic sensors for obstacle avoidance.

The two big wheels and the pair of sensors look familiar, but most of the other components are a different from that version. The biggest change is the transition from four wheels to just three. This let him drop the servo motor which controlled steering. At first glance we though this thing was going to pop some mad wheelies, but the direction of travel actually drags the third wheel being the larger two. The motors themselves are different, this time depending on gear-reduced DC motors. The motor H-bridge is the same, but [Eduard] used a simple transistor-based inverter to reduce the number of pins needed to activate it from two down to just one. He also moved from an Arduino Uno to a Nano to reduce the footprint of the controller.