A photo of a fully assembled PVCSub.

PVCSub: A Submarine From The Plumbing Aisle

Today in the submersibles department our hacker [Rupin Chheda] wrote in to tell us about their submarine project.

This sub is made from a few lengths of PVC piping of various diameters. There is an inflation system comprised of a solenoid and a pump, and a deflation system, also comprised of a solenoid and a pump. The inflation and deflation systems are used to flood or evacuate the ballast which controls depth. There are three pumps for propulsion and steering, one central pump for propulsion and two side pumps for directional control, allowing for steering through differential thrust. Power and control is external and provided via CAT6 cable.

Continue reading “PVCSub: A Submarine From The Plumbing Aisle”

Improved Jumping Bean

2025 One Hertz Challenge: Building A Better Jumping Bean

Do you feel nostalgia for a childhood novelty toy that had potential but ultimately fell short of its promise? Do you now have the skills to go make a better version of that toy to satisfy your long-held craving? [ExpensivePlasticCrap] does and has set off on a mission to make a better jumping bean.

Jumping beans, the phenomenon on which the novelty of [ExpensivePlasticCrap]’s childhood is based, are technically not beans, and their movement is arguably not a jump — a small hop at best. The trick is that the each not-a-bean has become the home to moth larvae that twitches and rolls on the ground as the larvae thrash about, trying to move their protective shells out of the hot sun.

The novelty bean was a small plastic pill-like capsule with a ball bearing inside what would cause the “bean” to move in unexpected ways as it rolled around. [ExpensivePlasticCrap]’s goal is to make a jumping bean that lives up to its name.

Various solenoids and motors were considered for the motion component of this new and improved bean. Ultimately, it was a small sealed vibrating motor that would be selected to move the bean without getting tangled in what was to become a compact bundle of components.

An ATtiny microcontroller won out over discrete components for the job of switching the motor on and off (once per second), for ease of implementation. Add this along with a MOSFET, battery and charging board for power into a plastic capsule, and the 1  Hz jumping bean was complete.

[ExpensivePlasticCrap] offers some thoughts on how to get more jump out of the design by reducing the weight of the build and giving it a more powerful source of motion.

If insect-inspired motion gets you jumping, check out this jumping robot roach and these tiny RoboBees.

Adding Automatic Emergency Braking To An RC Car

Modern RC cars can be pretty darn fast. That’s fun and all, but it also makes it easy to crash them into things. This problem inspired [Narrow Studios] to whip up something to offer a bit of protection.

The concept is simple enough—the RC car just needs some way to detect obstacles and stop before hitting them. The build relies on ultrasonic sensors as rangefinders to spot solid objects in the path of the vehicle. An Arduino Nano is in charge of reading the sensors. When it appears the car is approaching a wall or similar obstacle, it fires off a PWM signal to the car’s motor controller commanding it to brake. The additional hardware is held to the car with a bunch of custom printed brackets.

The setup isn’t perfect; the video notes that if you insist on accelerating quickly when close to a wall, you still have a fair chance of hitting it. That’s largely put down to the refresh time of the sensors and the overall system, which could be improved with further work. Still, if you’re always crashing your RC car into walls or curbs, this kind of thing might appeal to you.

We’ve featured some other great RC projects before, too.

Continue reading “Adding Automatic Emergency Braking To An RC Car”

Robot Dinosaur YOLOs Colors And Shapes For Kids

YOLO can mean many things, but in the context of [be_riddickulous]’s AI Talking Robot Dinosaur it refers to the “You Only Look Once” YOLOv11 object-detection algorithm by Ultralytics, the method by which this adorable dino recognizes colors and shapes to teach them to children.

If you’re new to using YOLO or object recognition more generally, [be_riddiculous]’s tutorial is not a bad place to get started. She goes through how many images you’ll need and what types to get the shape-and-color recognition needed for this project, as well as how to annotate them and train the model, either locally or in the cloud.

The project itself is an adorable paper-mache dinosaur with a servo-actuated mouth hiding some LEDs and a Raspberry Pi camera module to provide images. In operation, the dinosaur “talks” to children using pre-recorded voice lines, inviting them to play a game and put a specific shape, or shape of a specific color (or both) in its mouth. Then the aforementioned object detection (running on a laptop) goes “YOLO” and identifies the shape so the toy can provide feedback on the child’s choice via a speaker in the belly of the beast.

The link to the game code is currently not valid, but it looks like they used PyGame for the audio output code. A servo motor controls the mouth, but without that code it’s not entirely clear to us what it’s doing. We expect by the time you read this there’s good odds [be_riddickulous] will have fixed that link and you can see for yourself.

The only thing that holds this back from being a great toy to put in every Kindergarten class is the need to have a laptop close by to plug the webcam into. A Raspberry Pi 5 ought to have the horsepower to run YOLOv11, so with a little extra effort the whole thing could be standalone — there might even be room in there for batteries.We’ve had other hacks aimed at little ones, like a kid-friendly computer to relive the glory days of the school computer lab or one of the many iterations of the RFID jukebox idea. If you want to wow the kiddos with AI, perhaps take a look at this talking Santa plush.

Got a cool project, AI, kid-related, or otherwise? Don’t forget to toss us a tip!

Electromechanical Atari Is A Steampunk Meccano Masterpiece

If William Gibson and Bruce Sterling had written an arcade scene into “The Difference Engine”, it probably would have looked a lot like [Pete Wood]’s Meccano Martian Mission, as illustrated in the video below by the [London Meccano Club]. Meccano Martian Mission is an homage to Atari’s 1978 Lunar Lander video game, but entirely electromechanical and made of– you guessed it– Meccano.

Continue reading “Electromechanical Atari Is A Steampunk Meccano Masterpiece”

Build a $35 400 MHz Logic Analyzer

Build A 400 MHz Logic Analyzer For $35

What do you do when you’re a starving student and you need a 400 MHz logic analyzer for your digital circuit investigations? As [nanofix] shows in a recent video, you find one that’s available as an open hardware project and build it yourself.

The project, aptly named LogicAnalyzer was developed by [Dr. Gusman] a few years back, and has actually graced these pages in the past. In the video below, [nanofix] concentrates on the mechanics of actually putting the board together with a focus on soldering. The back of the build is the Raspberry Pi Pico 2 and the TXU0104 level shifters.

If you’d like to follow along at home, all the build instructions and design files are  available on GitHub. For your convenience the Gerber files have been shared at PCBWay

Of course we have heaps of material here at Hackaday covering logic analyzers. If you’re interested in budget options check out $13 Scope And Logic Analyzer Hits 18 Msps or how to build one using a ZX Spectrum! If you’re just getting started with logic analyzers (or if you’re not sure why you should) check out Logic Analyzers: Tapping Into Raspberry Pi Secrets.

Continue reading “Build A 400 MHz Logic Analyzer For $35”

A Lego vehicle crossing a gap between two benches.

Making A LEGO Vehicle Which Can Cross Large Gaps

Here is a hacker showing off their engineering chops. This video shows successive design iterations for a LEGO vehicle which can cross increasingly large gaps.

At the time of writing this video from [Brick Experiment Channel] has been seen more than 110,000,000 times, which is… rather a lot. We guess with a view count like that there is a fairly good chance that many of our readers have already seen this video, but this is the sort of video one could happily watch twice.

Continue reading “Making A LEGO Vehicle Which Can Cross Large Gaps”