A Look Inside What Makes Cruise Control Work

[Todd Harrison] took a look inside the business end of the cruise control system from his 1994 Jeep Grand Cherokee. We were a bit surprised at how the system operates. The parts seen in the image above make up the throttle control, using a trio of solenoids to vary the level of vacuum inside the device.

We categorized this as a repair hack, but [Todd] is just rubbernecking and doesn’t have any real plan to fix the system. It’s been on the fritz for ten years and this piece may not even be the culprit. But we’re still satisfied because he gives us a look at the system which uses the amber-colored stoppers on the three solenoids to plug three different sizes of weep holes. The unit is a vacuum enclosure where a throttle wire connects to a rubber diaphragm and adjust engine speed as the diaphragm moves. The vehicle’s computer actuates the three solenoids, allowing leakage to vary the level of vacuum, thereby keeping the throttle at just the right level. Neat!

Continue reading “A Look Inside What Makes Cruise Control Work”

Building A Homebrew Diesel ECU

arduino-diesel-ecu

Over the years automobile engines have become increasingly complex, and with this added complexity comes an increased reliance on intricate computer systems to run them. These control systems are typically the fruit of many hours of research and development, carefully protected by the auto makers who create them. Instead of relying on a closed system to power his car, a Finnish hacker that goes by the name [synkooppi] has decided to do away with his diesel engine’s ECU altogether and build one of his own with little more than an Arduino.

As you can see from his web site, [synkooppi] has created his DIY ECU using an Arduino Mega, which is capable of controlling diesel engines that employ a Bosch VP37 or other inline diesel pump. So far he has all of the basic workings in place, which allow him to run and control an Audi diesel motor.

While many details about his homebrew ECU are hard to come by, he does have a series of development videos posted on YouTube which should help satiate inquisitive minds. For those of you with a spare diesel motor laying around, [synkooppi] has made the first release of his code available to try out.

Stick around to see a video of the ECU in action.

[Thanks, perhof]

Continue reading “Building A Homebrew Diesel ECU”

All-terrain Electric Scooter Build

This all-terrain electric scooter can destroy the speed limit in a school zone without even trying. [Ben Katz] built from the ground-up and did an amazing job of documenting the journey.

He strated by redesigning the suspension of a plain old kick-scooter to use these large inflatable wheels. This includes a suspension system that helps cushion the rider from the bumps of an uneven driving surface. The increased deck height leaves plenty of room for the locomotive parts. You can see the three cylinders mounted near the rear wheel. Those are the motors, connected to a single drive shaft with a gear box which [Ben] built. The drive shaft powers the rear wheel via chain drive. Batteries are housed in the rectangular enclosure in front of the motors.

Don’t miss the video after the break. [Ben] takes the thing on and off-road, averaging 15 MPH while topping out at 24!

Continue reading “All-terrain Electric Scooter Build”

Keyless BMW Cars Prove To Be Very Easy To Steal

A lot of higher end cars are now coming out with RF fobs that unlock and start the car. There is no longer a physical key that is inserted in the ignition. It turns out that for BMW this means stealing the cars is extremely easy for a sophisticated criminal. We always liked the idea of metal keys that ALSO had a chip in them. The two-tiered security system makes sense to us, and would have prevent (or at least slowed down) the recent  rash of BMW thefts that are going on in the UK.

So here’s the deal. A device like the one seen above can be attached to the On-Board Diagnostic (ODB) port of the vehicle. It can then be used to program a new keyfob. This of course is a necessary feature to replace a lost or broken device, but it seems the criminals have figured out how to do it themselves. Now the only hard part is getting inside the car without setting off the alarm. According to this article there are ultrasonic sensors inside which are designed to detect intrusion and immobilize the vehicle. But that’s somehow being circumvented.

You can check out a keyfob programming demo, as well as actual theft footage, after the break.

Continue reading “Keyless BMW Cars Prove To Be Very Easy To Steal”

Automated System Hopes To Make Manual Road Patching A Thing Of The Past

automated-road-repair

You don’t necessarily have to live in a cold climate to experience how roads start to deteriorate once cracks begin forming in the asphalt surface. Even more frustrating than the potholes, dips, and road erosion is the snarled traffic that results from closing lanes to repair them. Researchers at the Georgia Tech Research Institute have developed a way to detect and quickly fix these cracks with minimal human interaction, making the process a bit less painful than before.

The automatic road patcher resides on a trailer which is towed behind a service vehicle at 5 km/h. Cameras mounted near the front of the device detect cracks down to 3mm in width using an array of LED lights to guide the way. Once a fault has been detected, nozzles mounted under the trailer blast the road with liquid tar to seal the crack before it becomes a real problem.

The system seems to work reasonably well in the tests we’ve seen, and researchers are tweaking the processing software to make the rig even more effective before rolling it out on a wider scale.

[via Gizmodo]

Testing Lithium Cells For Use With A Hybrid Car

[Mikey] got a real deal on some A123 Pouch Cells. These are large Lithium cells that tolerate 100A discharge and 50A recharge currents, with 20 AH of life off of one charge. He’s been doing a bunch of testing to find out if the cells can go into an expandable battery pack and be made for use with hybrid cars.

We just looked in on a battery tester used for solar power car arrays. This is a similar situation except [Mikey] is focusing on the test data, rather than the apparatus. The link above is a collection of his notes from testing. Start reading at the bottom of the page up to get the chronology right. He starts to zero in on the most efficient charging methods. Immediately he’s hit with a big need for cooling as the cells take no time to pass 100 degree Fahrenheit. He continues testing with heat sink and fan, and even brings a thermal imaging camera to help with the design.

[Thanks Chris]

Electric Bike (earplugs Not Included)

It’s obvious this bike has some extra parts. But look closely and you’ll see the chainring has no chain connecting to it. Pedaling will get you nowhere since [PJ Allen] rerouted the chain in order to drive this bicycle using an electric motor.

He’s got beefy motor which pulls 350 Watts at 24 Volts. For speed control he opted to use an Arduino, pumping out PWM signals to some MOSFETs. This results in an incredibly noisy setup, as you can hear in the bench test video after the break. But once this is installed on the bike it doesn’t quiet down at all. You can hear the thing a block away.

The original road test fried the first set of 7A MOSFETs when trying to start the motor from a standstill. It sounds like the 40A replacements he chose did the trick through. We didn’t see any information on the battery life, but if he runs out of juice on the other side of town we bet he’ll be wishing he had left the chain connected to the crankset.

Continue reading “Electric Bike (earplugs Not Included)”