UEVR Project Converts Games To VR, Whether They Like It Or Not

UEVR, or the Universal Unreal Engine VR Mod by [praydog] is made possible by some pretty neat software tricks. Reverse engineering concepts and advanced techniques used in game hacking are leveraged to add VR support, including motion controls, to applicable Unreal Engine games.

The UEVR project is a real-world application of various ideas and concepts, and the results are impressive. One can easily not only make a game render in VR, but it also handles managing the player’s perspective (there are options for attaching the camera view to game objects, for example) and also sensibly maps inputs from VR controllers to whatever the game is expecting. This isn’t the first piece of software that attempts to convert flatscreen software to VR, but it’s by far the most impressive.

There is an in-depth discussion of the techniques used to sensibly and effectively locate and manipulate game elements, not for nefarious purposes, but to enable impressive on-demand VR mods in a semi-automated manner. (Although naturally, some anti-cheat software considers this to be nefarious.)

Many of the most interesting innovations in VR rely on some form of modding, from magic in Skyrim that depends on your actual state of mind to adding DIY eye tracking to headsets in a surprisingly effective, modular, and low-cost way. As usual, to find cutting-edge experimentation, look to the modding community.

Quest 3 VR Headset Can Capture 3D Video (Some Tampering Required)

The Quest 3 VR headset is an impressive piece of hardware. It is also not open; not in the way most of us understand the word. One consequence of this is the inability in general for developers or users to directly access the feed of the two color cameras on the front of the headset. However, [Hugh Hou] shares a method of doing exactly this to capture 3D video on the Quest 3 headset for later playback on different devices.

The Quest 3 runs Android under the hood, and Developer Mode plus some ADB commands does the trick.

There are a few steps to the process and it involves enabling developer mode on the hardware then using ADB (Android Debug Bridge) commands to enable the necessary functionality, but it’s nothing the average curious hacker can’t handle. The directions are written out in the video’s description, along with a few handy links. (The video is embedded below just under the page break, but view it on YouTube to access the description and all the info in it.)

He also provides some excellent guidance on practical things like how to capture stable shots, editing the videos, and injecting the necessary metadata for optimal playback on different platforms, including hassle-free uploading to a service like YouTube. [Hugh] is no stranger to this kind of video and camera handling and really knows his stuff, and it’s great to see someone provide detailed instructions.

This kind of 3D video comes down to recording two different views, one for each eye. There’s another way to approach 3D video, however: light fields are also within reach of enterprising hackers, and while they need more hardware they yield far more compelling results.

Continue reading “Quest 3 VR Headset Can Capture 3D Video (Some Tampering Required)”

See Some Of The Stranger VR Ideas From SIGGRAPH

[Devin Coldewey] shared his experiences with some of the more unusual VR concepts on display at SIGGRAPH 2023. Some of these ideas are pretty interesting in their own right, and even if they aren’t going to actually become commercial products they give some insight into the kinds of problems that are being worked on. Read on to see if anything sparks ideas of your own.

In the area of haptics and physical feedback, Sony shared research prototypes that look like short batons in which are hidden movable weights. These weights can shift up or down on demand, altering their center of gravity. [Devin] states that these units had a mild effect on their own, but when combined with VR visuals the result was impressive. There’s a video demonstration of how they work. Continue reading “See Some Of The Stranger VR Ideas From SIGGRAPH”

Weird Lens Allows Light Field Passthrough For VR Headset

Light Fields are a subtle but critical element to making 3D video look “real”, and it has little to do with either resolution or field of view. Meta (formerly Facebook) provides a look at a prototype VR headset that provides light field passthrough video to the user for a more realistic view of their surroundings, and it uses a nifty lens and aperture combination to make it happen.

As humans move our eyes (or our heads, for that matter) to take in a scene, we see things from slightly different perspectives in the process. These differences are important cues for our brains to interpret our world. But when cameras capture a scene, they capture it as a flat plane, which is different in a number of important ways from the manner in which our eyes work. A big reason stereoscopic 3D video doesn’t actually look particularly real is because the information it presents lacks these subtleties.

Continue reading “Weird Lens Allows Light Field Passthrough For VR Headset”

Why VR As Monitor Replacement Is Likely To Be Terrible For A While Yet

Putting on a headset and using virtual monitors in VR instead of physical ones is a use case that pops up, but is it really something feasible? [Karl Guttag], who has long experience and a deep understanding of the technical challenges that face such devices, doesn’t seem to think so.

In his writeup [Karl] often focuses on the recently-unveiled high resolution Apple Vision Pro, but the issues he discusses transcend any particular product. His article is worth the read for anyone with an interest in these issues, but we’ll summarize some main points here. Continue reading “Why VR As Monitor Replacement Is Likely To Be Terrible For A While Yet”

DIY Eye Tracking For VR Headsets, From A To Z

Eye tracking is a useful feature in social virtual reality (VR) spaces because it really enhances presence and communication when one’s avatar has a realistic gaze. Most headsets lack this feature, but EyeTrackVR has a completely open source solution ready for anyone willing to put it together.

Camera is visible in lower right corner.

EyeTrackVR is a combination of hardware, software, and 3D printable mounts for attaching a pair of microcontroller boards, cameras, and IR LEDs to just about any existing VR headset out there. An ESP32-based board and tiny camera module watches each eyeball, and under IR illumination the pupil presents as an easily-identified round black area. Software takes care of turning the camera’s view of the pupil into a gaze direction value that can be plugged into other software.

The project is still under active development, but in its current state is perfectly suitable for creating a functional system that can integrate into a variety of existing headsets with printed mounting brackets. Interested? Check out the intro and if it sounds up your alley, dive into the build guide which spells out everything you need to know. Check out the video below for a demo of EyeTrackVR working in VRChat, along with an overview of software support.

We’ve seen headsets built to custom specs that integrate eye tracking, but even if one is repackaging an existing headset that’s a perfect opportunity to include this feature.

Continue reading “DIY Eye Tracking For VR Headsets, From A To Z”

Making Your Own VR Headset? Consider This DIY Lens Design

Lenses are a necessary part of any head-mounted display, but unfortunately, they aren’t always easy to source. Taking them out of an existing headset is one option, but one may wish for a more customized approach, and that’s where [WalkerDev]’s homebrewed “pancake” lenses might come in handy.

Engineering is all about trade-offs, and that’s especially true in VR headset design. Pancake lenses are compact units that rely on polarization to bounce light around internally, resulting in a very compact assembly at the cost of relatively poor light efficiency. That compactness is what [WalkerDev] found attractive, and in the process discovered that stacking two different Fresnel lenses and putting them in a 3D printed housing yielded a very compact pancake-like unit that gave encouraging results.

This project is still in development, and while the original lens assembly is detailed in this build log, there are some potential improvements to be made, so stay tuned if you’re interested in using this design. A DIY headset doesn’t mean you also must DIY the lenses entirely from scratch, and this option seems economical enough to warrant following up.

Want to experiment with mixing and matching optics on your own? Not only has [WalkerDev]’s project shown that off-the-shelf Fresnel lenses can be put to use, it’s in a way good news that phone-based VR is dead. Google shipped over 10 million cardboard headsets and Gear VR sold over 5 million units, which means there are a whole lot of lenses in empty headsets laying around, waiting to be harvested and repurposed.