Quest 3 VR Headset Can Capture 3D Video (Some Tampering Required)

The Quest 3 VR headset is an impressive piece of hardware. It is also not open; not in the way most of us understand the word. One consequence of this is the inability in general for developers or users to directly access the feed of the two color cameras on the front of the headset. However, [Hugh Hou] shares a method of doing exactly this to capture 3D video on the Quest 3 headset for later playback on different devices.

The Quest 3 runs Android under the hood, and Developer Mode plus some ADB commands does the trick.

There are a few steps to the process and it involves enabling developer mode on the hardware then using ADB (Android Debug Bridge) commands to enable the necessary functionality, but it’s nothing the average curious hacker can’t handle. The directions are written out in the video’s description, along with a few handy links. (The video is embedded below just under the page break, but view it on YouTube to access the description and all the info in it.)

He also provides some excellent guidance on practical things like how to capture stable shots, editing the videos, and injecting the necessary metadata for optimal playback on different platforms, including hassle-free uploading to a service like YouTube. [Hugh] is no stranger to this kind of video and camera handling and really knows his stuff, and it’s great to see someone provide detailed instructions.

This kind of 3D video comes down to recording two different views, one for each eye. There’s another way to approach 3D video, however: light fields are also within reach of enterprising hackers, and while they need more hardware they yield far more compelling results.

Continue reading “Quest 3 VR Headset Can Capture 3D Video (Some Tampering Required)”

I’ve Got Two Turntables And A Laser Engraver

Digital media provides us with a lot of advantages. For something like recording and playing back music, digital copies don’t degrade, they can have arbitrarily high quality, and they can be played in a number of different ways including through digital streaming services. That being said, a number of people don’t feel like the digital experience is as faithful to the original sound as it could be and opt for analog methods instead. Creating analog copies of music is a much tougher matter though, as [Marco] demonstrates by using a laser engraver to produce vinyl records.

[Marco] started this month-long project by assembling and calibrating the laser engraver. It has fine enough resolution to encode analog data onto a piece of vinyl, but he had to create the software. The first step was to generate the audio sample, then process it through a filter to remove some of the unwanted frequencies. From there, the waveform gets made into a spiral, accounting for the changing speed of the needle on the record as it moves to the center. Then the data is finally ready to be sent to the laser engraver.

[Marco] did practice a few times using wood with excellent success before moving on to vinyl, and after some calibration of the laser engraver he has a nearly flawless 45 rpm record ready to hit the turntable. It’s an excellent watch if not for anything than seeing a working wood record. We’ve actually seen a similar project before (without the wood prototyping), and one to play records from an image, but it’s been quite a while.

Thanks to [ZioTibia81] for the tip!

Continue reading “I’ve Got Two Turntables And A Laser Engraver”

Secret C64 Program Found On A Christian Rock Band’s Vinyl Record

How often do you find Easter eggs in old vinyl records?

It sure was a surprise for [Robin Harbron] when he learned about a Commodore 64 program hidden on one of the sides of a record from the 1985 album of Christian rock band Prodigal. The host of the YouTube channel 8-Bit Show and Tell shows the “C-64” etching on one side of the vinyl, which he picked up after finding out online that the record contained the hidden program.

The run-out groove on records is typically an endless groove that keeps the record player from running off the record (unless there is an auto-return feature, which just replays the record). On side one of the vinyl, the run-out groove looks normal, but on side two, it’s a little thicker and contains some hidden audio. Recording the audio onto a cassette and loading it onto a dataset reveals a short C64 program.

The process is a little more troublesome that that, but after a few tries [Harbron] reveals a secret message, courtesy of Albert Einstein and Jesus Christ. It’s not the most impressive program ever written, but it’s pretty cool that programmers 35 years ago were able to fit it into only a few seconds of audio.

Unfortunately, we won’t be hearing much actual music from the album – [Harbron] chose not to play the songs to avoid copyright issues on YouTube.

Continue reading “Secret C64 Program Found On A Christian Rock Band’s Vinyl Record”

Magic Record Stand Can Play Your Records For You

Vinyl remains a popular format, despite taking a huge hit in popularity for a couple decades while CDs ruled the roost. It has a charm that keeps it relevant, and likely will continue to do so until everyone who grew up with a record player dies out. In the meantime, [sp_cecamp] has come up with a great way to experience your collection, with the magic of modern technology. It goes by the name of Plynth.

Fundamentally, it’s a small record stand with an excellent party trick. The prototype consists of a 3D-printed body, which holds a record sleeve at an attractive angle for display. A camera built into the base then images the artwork. The first image taken is run through the Google Vision API, and further images are then run through OpenCV to identify the record. This data is then passed to the Spotify API to play the track. The whole process takes a couple of seconds, and the music is then pumped out of whatever streaming device is connected to the rig.

It’s a fun way to play your old records, and would be a welcome change to those tired of screaming at Siri to play Weezer (Blue Album), not Weezer (Green Album). For those interested, [sp_cecamp] has thrown up a site to gauge interest in the project, and may make a limited production run in future.

Of course, you could instead just go about building your own turntable. To each their own!

A Hacked Solution For Non-Standard Audio Modules

When life hands you lemons, lemonade ends up being your drink of choice. When life hands you non-standard components, however, you’ve got little choice but to create your own standard to use them. Drinking lemonade in such a situation is left to your discretion.

The little audio record and playback modules [Fran Blanche] scored from eBay for a buck a piece are a good example. These widgets are chip-on-board devices that probably came from some toy manufacturer and can record and playback 20 seconds of audio with just a little external circuitry. [Fran] wants to record different clips on a bunch of these, and pictured using the card-edge connector provided to plug them the recording circuit. But the pad spacing didn’t fit any connector she could find, so she came up with her own. The module and a standard 0.1″ (2.54 mm) pitch header are both glued into a 3D-printed case, and the board is connected to the header by bonding wires. It makes a nice module that’s easily plugged in for recording, and as [Fran] points out, it’s pretty adorable to boot. Check it out in the video below.

Sure, the same thing could have been accomplished with a custom PCB breaking out the module’s pins to a standard card-edge connector. But [Fran] knows a thing or two about ordering PCBs, and our guess is she wanted to get this done with what was on hand rather than wait for weeks. There’s something to be said for semi-instant gratification, after all. And lemonade.

Continue reading “A Hacked Solution For Non-Standard Audio Modules”

Want A Leak-Proof Camper? Better Fire Up The 3D Printer Now.

Ah, the great outdoors.  Rejuvenating air rife with mosquitoes and other nasties, and spending some time hanging out in the woods sleeping in a 3D printed camper. Wait– what was that last one again?

Yep, it’s exactly what it sounds like. A Canadian team headed by [Randy Janes] of Wave of the Future 3D, printed a camper at [Create Cafe] in Saskatoon, Saskatchewan, using high-flow nozzles on one of the largest 3D printers in North America. These layers are 10.3mm thick!!

This trailer is one single printed piece, taking 230 hours — nine and a half days — of straight printing with only a few hangups. Weighing 600lbs and at 13 feet long by six feet wide — approximately 507 cubic feet, this beats the previous record holder for largest single piece indoor print in size by three times over.

Continue reading “Want A Leak-Proof Camper? Better Fire Up The 3D Printer Now.”

Brazil Wins The Raspberry Pi Overclocking Olympics

[Alex Rissato] proudly reports that he now holds the record for highest benchmark score on HWBOT (machine translation); something he sees not only as a personal achievement but admirably, of national pride. Overclocking a Raspberry Pi is not as simple as achieving the highest operational clock rate. A record constitutes just the right combination of CPU clock, memory clock, GPU clock and finally the CPU core voltage. If you’ve managed to produce that special sauce, the combination must be satisfactorily cooled and most importantly be stable enough to pass an actual performance benchmark.

More POWAAA to the CPU!

[Alex] realized that the main hurdle to achieving the desired CPU clock was the internally generated and hence restricted, CPU core voltage; This is externally LC filtered and routed back to the CPU on a stock Pi. [Alex] de-soldered the filter on the PCB and provided the CPU with an externally generated core voltage.

Next, the cooling had to be tended to. Air cooling simply wouldn’t cut it, so a Peltier based heatsink interface had to be devised with the hot side immersed in a bucket of salt water. All of this translated to a comfy 16C at a clock speed of 1600 MHz.

Was all the effort justified? We certainly think it was! Despite falling short of the Pi zero CPU clock rate record, currently set at 1620MHz,  [Alex] earned the top spot in the HWBOT Prime overclocking benchmark. Brazil can now certainly add this to its trophy cabinet, arguably overshadowing the 129 Olympic medals.