The Spirit Of Hackaday Shines In Shenzhen

Hackaday loves to spread the message of the hardware hacking lifestyle. That’s only possible where there are hardware hackers willing to spend their time getting together to talk the future of the hardware industry, and to celebrate where we are now. We’re honored that you came out en masse for our Shenzhen Workshop and Meetup!

Zero to Product

[Matt Berggren] has presented his Zero to Product  workshop a few times now as part of our Hackaday Prize Worldwide series. This spring that included Los Angeles, San Francisco, and ten days ago it was Shezhen, China.

We partnered with MakerCamp, a week-long initiative that pulled in people from all over China to build a Makerspace inside of a shipping container. Successful in their work, the program then hosted workshops. The one caveat, Shenzhen in June is a hot and sticky affair. Luckly our friends at Seeed Studio were kind enough to open their climate-controlled doors to us. The day-long workshop explored circuit board design, using Cadsoft Eagle as the EDA software to lay out a development board for the popular ESP8266 module.

Continue reading “The Spirit Of Hackaday Shines In Shenzhen”

Hackaday Prize Entry: An SD Card Arduino

About a year ago, Intel announced they’d be launching a new platform stuffed into an SD card. Imagine – an entire computer packaged into an SD card, with nine whole pins for power and I/O. Cooler heads prevailed, the Intel Edison was launched, but the idea stuck; why can’t you fit an Arduino in an SD card?

[kodera2t] found out there’s no real reason why you can’t put a small microcontroller inside an SD card. For his Hackaday Prize entry, he created the SDuino, and it’s exactly what it says on the tin: an ATMega328p stuffed into a microSD adapter.

Unlike the other microcontroller stuffed in an SD card platform — the Electric Imp, [kodera] is, for the most part, respecting the standard pinout for SD cards. The MISO and MOSI signals are reversed, of course, one of the grounds on the SD pinout is tied to an analog input pin on the microcontroller, and the chip select on the SD pinout is ignored completely. Other than that, it’s the closest you’re going to get to an SD card with a microcontroller.


The 2015 Hackaday Prize is sponsored by:

circuit board

Hackaday Prize Entry: Saving Water With The Vinduino

[Reinier van der Lee] owns a vineyard in southern California – a state that is in a bit of a water crisis. [Reinier van der Lee] also owns an arduino and a soldering iron. He put together a project the reduces his water usage by 25%, and has moved it to open source land. It’s called the Vinduino.

water animationIts operation is straight forward. You put a water sensor in the dirt. You turn on the water. When the water hits the sensor, you turn the water off. This was not, however, the most efficient method. The problem is by the time the sensor goes off, the soil is saturated to the point that the plant cannot take it all up, and water is wasted.

The problem was solved by using three sensors. The lowest most sensor is placed below the roots. So it should never go off. If it does, the plant is not taking in all the water, and you can reduce the output. The two sensors above it monitor the water as it transitions through the soil, so it knows when to decrease the water amount and watering cycle times.

Be sure to check out the project details. All code and build files are available on his github under the GNU General Public License 3.0


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Lose Yourself To Dance

Not every project for The Hackaday Prize needs to solve a pressing concern, save the planet, or help people. Sometimes, it just needs to be cool. [Jeremy]’s project is certainly cool. He’s building a touch-sensitive disco floor for the awesomeness of Saturday Night Fever combined with the technical complexity of the Billy Jean music video.

We’ve seen a few disco floor builds over the years, and for the most part, [Jeremy] isn’t straying too far from a well-tread path. He’s using LED strips to light his build, cutting the frame for the floor out of plywood and translucent squares, and using an ATMega to control each panel. So far, nothing out of the ordinary.

The trick to this build is that every square has a capacitive touch sensor. Underneath each translucent panel is a bit of wire mesh. Because the disco floor has 144 nodes, running the standard capacitive sensor library just wouldn’t work; the delay in measuring each node adds up very fast. By rewriting [Paul Stoffregen]’s capacitive sensor library, [Jeremy] was able to run many panels at once.

Right now [Jeremy] has a single panel that responds equally well to bare feet as it does to motorcycle boots. It’s exactly what you need in an interactive dance floor, and we can’t wait to seen the entire floor running.


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Biohand

One of the greatest uses we’ve seen for 3D printing is prosthetics; even today, a professionally made prosthetic would cost thousands and thousands of dollars. For his entry to the Hackaday Prize, [Martin] is building a low-cost 3D printed hand that works just like a natural hand, but with motors instead of muscles and tendons.

There are a lot of 3D printed finger mechanisms around that use string and wires to move a finger around. This has its advantages: it’s extremely similar to the arrangement of tendons in a normal hand, but [Martin] wanted to see if there was a better way. He’s using a four-bar linkage instead of strings, and is driving each finger with a threaded rod and servo motor. It’s relatively strong; just the motor and drive screw system was able to lift 1kg, and this mechanical arrangement has the added bonus of using the servo’s potentiometer to provide feedback of the position of the finger to the drive electronics.

This is far from the only prosthetic hand project in the running for The Hackaday Prize. [OpenBionics] is working on a very novel mechanism to emulate the function of the human hand in their project, and [Amadon Faul] is going all out and casting metacarpals and phalanges out of aluminum in his NeoLimb project. They’re all amazing projects, and they’re all making great use of 3D printing technology, and by no means are there too many prosthetic projects entered in The Hackaday Prize.


The 2015 Hackaday Prize is sponsored by:

Prize Alert: Submit By Monday For Chance At Hundreds

For the past two weeks we’ve been on the lookout for the best 2015 Hackaday Prize entries which are using parts manufactured by Atmel, Freescale, Microchip, and Texas Instruments. All four are sponsors of this years initiative to solve problems faced by a large number of people.

list-banners-in-project-sidebarThe three-week mini-contest will come to a close on Monday and the Hackaday crew will begin to assign 200 prizes to the entries; 50 for each of the curated lists. Prizes include Mooshimeters, DS Logic Analyzers, Stickvise, Bluefruit BLE Sniffers, Cordwood Puzzle kits, and TV-B-Gone kits.

There are two things you need to do in order to be considered for this contest: make sure your project has been submitted as an official 2015 Hackaday Prize entry, and that the project is listed on the list associated with the parts manufacturer you’ve used in your project design. The easiest way to get on the list is to leave a comment on the .Stack thread.

You can check to ensure you’ve met these two requirements by viewing your project page and looking in the left sidebar. The square thumbnail photo at the top will have a black flag with the astronaut logo at “2015”. Below that you will see banners for the lists on which your project is included. You should be on at least one of the following lists: 2015 THP: Atmel Parts2015 THP: Freescale Parts2015 THP: Microchip Parts2015 THP: Texas Instruments Parts.

Don’t miss out on this stage of the contest. You stand a really great chance of being selected as a winner! And for those already on the lists we can offer some advice for rising to the top. Polish up your documentation. Tell us how the parts are used in your design, where you are in the prototyping process, and list the tasks you have yet to accomplish. Share the whole story of what you’re working on. Good luck!

Those looking to discover and be inspired by the existing entries should give Astronaut or Not a try. The side-by-side comparisons are a great way to browse, and could also win you some prizes.


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Ultimate Circuitbending

Circuit bending is the process of taking a small electronic toy or musical instrument, soldering wires to pads on the PCB, and hoping the sounds it produces will be cool. It’s not a science by any means, and any good, weird sounds you’ll get out of a Speak ‘N Spell or old MIDI keyboard are made entirely by accident or hours and hours of experimentation.

[Alpha Charlie]’s entry for the Hackaday Prize is the most technologically advanced circuit bending you’ll ever see. He’s using an old digital beat box, the Roland TR-626, with computer-controlled wires between random pads on the PCB.

Until now, you could tell how technically adept a circuit bender was simply by how many switches were on the circuit-bent instrument. [Alpha Charlie] doesn’t need switches. Instead, he’s using a few crosspoint switch ICs to connect different pins and pads on the TR-626’s PCB with an Arduino. All of this is controlled by a touchscreen display, and experimenting with the circuit is as simple as pushing a few buttons. Each ‘bend’ is computer controlled, and can be saved and recalled at will.

Of course, circuit bending doesn’t do anyone any good if it sounds like crap. [Alpha Charlie] doesn’t have to worry there. In the video below, he’s getting some very unique sounds that sound like a choir of angels to dorks like myself that listen to Nintendo music.

Continue reading “Hackaday Prize Entry: Ultimate Circuitbending”