Samy Kamkar is well known for many things, but lately it has been his hardware security hacks that have been turning heads. The nice thing to know is that, despite not having a background in hardware, Samy is able to run with the best of hardware researchers. At the Hackaday SuperConference he offered words of advice for anyone trying to walk the path of discovery with an exciting new piece of electronics. One might say it’s a crash-course in how to be a hardware hacker.
Your computer uses ones and zeros to represent data. There’s no real reason for the basic unit of information in a computer to be only a one or zero, though. It’s a historical choice that is common because of convention, like driving on one side of the road or having right-hand threads on bolts and screws. In fact, computers can be more efficient if they’re built using different number systems. Base 3, or ternary, computing is more efficient at computation and actually makes the design of the computer easier.
For the 2016 Hackaday Superconference, Jessie Tank gave a talk on what she’s been working on for the past few years. It’s a ternary computer, built with ones, zeros, and negative ones. This balanced ternary system is, ‘Perhaps the prettiest number system of all,’ writes Donald Knuth, and now this number system has made it into silicon as a real microprocessor.
We all wring our hands over the security (or lack thereof!) of our myriad smart devices. If you haven’t had your home network hacked through your toaster, or baby cam, you’re missing out on the zeitgeist. But it doesn’t have to be this way — smart devices can be designed with security in mind, and [Chris Conlon] came to Pasadena to give us a talk on the basics.
He starts off the talk with three broad conceptual realms of data security: data in transit, data at rest on the device, and the firmware and how it’s updated. A common thread underlying all of this is cryptography, and he devotes the last section of his talk to getting that right. So if you’d like a whirlwind tour of device security, watch on!
Retro is new again, and everywhere you look you’ll find films, documentaries, and TV shows cashing in on the nostalgia of their target audience. There is one inaccuracy you’ll find with this these shows: Apple computers are everywhere. This isn’t a historical truth – Commodore was everywhere, the C64 was the computer the nerds actually used, and to this day, the Commodore 64 is still the best-selling computer in history.
Commodore is gone, replaced with a superfund site, but the people who made the best computers in history are still around. At the 2016 Hackaday SuperConference, Bil Herd gave a talk on the second act of Commodore’s three-act tragedy. Bil is a frequent contributor around these parts, and as always he illuminates the 1980s far better than Halt and Catch Fire ever could.
Noodle Feet is a robot — an artistically designed robot — that is a character from Sarah Petkus’ webcomic Gravity Road. This webcomic explores a post-human universe inhabited by robots, and dives deep into these robots’ exploration of the trash left behind from a human civilization.
Sarah’s not just drawing these robots. She’s bringing them to life. The character Noodle Feet, so named because his legs are encased in pool noodles, has been made real with an aluminum skeleton, a PCB brain, and infrared detecting eyes. At the 2016 Hackaday SuperConference Sarah gave a talk on the challenges of making this robot real and the specifics of making her robot dig its toes into carpet, slobber all over the floor, and taste with its artificial tongue.
Since last year’s talk on Noodle Feet, Sarah has vastly improved the gripping strength of her noodle’s feet. Over the last two years of construction the mechanism to extend grippy, cat-like toenails has moved from cheap hobby servos to solenoids to a clever cam system. While these toe feet worked, the grip was never quite right, and the world isn’t completely covered in shag carpet. After the break we’ll take a closer look at the improvements that Sarah made to the design and how she came up with the ideas for each new iteration.
Bodo Hoenen and his family had an incredible scare. His daughter, Lorelei, suddenly became ill and quickly went from a happy and healthy girl to one fighting just to breathe and unable to move her own body. The culprit was elevated brain and spinal pressure due to a condition called AFM. This is a rare polio-like condition which is very serious, often fatal. Fortunately, Lorelei is doing much better. But this health crisis resulted in nearly complete paralysis of her left upper arm.
Taking an active role in the health of your child is instinctual with parents. Bodo’s family worked with health professionals to develop therapies to help rehabilitate Lorelei’s arm. But researching the problem showed that success in this area is very rare. So like any good hacker he set out to see if they could go beyond the traditional to build something to increase Lorelei’s odds.
What resulted is a wearable prosthesis which assists elbow movement by detecting the weak signals from her bicep and tricep to control an actuator which moves her arm. Help came in from all over the world during the prototyping process and the project, which was the topic of Bodo Hoenen’s talk at the Hackaday SuperConference, is still ongoing. Check that out below and the join us after the break for more details.
The 2016 Hackaday SuperConference took place last month in sunny Pasadena, California. Also calling Pasadena home is the Jet Propulsion Laboratory, the place where Mars rovers are built, where probes are guided around the solar system, and where awesome space stuff happens.
JPL had a large contingent at the SuperCon and two of them teamed up to present their talk: Charles Dandino and Lucy Du. Lucy is a mechatronics engineer at JPL and already has a little bit of fame from fielding a Battlebot in the last two seasons of ABC’s series. Charles is also in mechatronics, with experience with Curiosity, the Mars 2020 rover, and the (hopefully) upcoming asteroid redirect mission.
In their talk, Charles and Lucy uncovered some of the hacks happening in the background at JPL. There’s a lot of them, and their impact goes much further than you would expect. Everything from remote control cars to keeping spacecraft alive on the other side of the solar system.