Universal Bio-Electrical Signal Amplifier Makes Reading Body Signals Easy

The electrical signals emitted by the human body tell us a lot about what’s going on inside. But getting those signals inside your microcontroller is not straightforward: the voltages are too small for most ADCs, and the ever-present 50 or 60 Hz mains frequency makes it hard to discern subtle changes. Over at Upside Down Labs, [Deepak Kathri] developed a universal biosensor interface called the BioAmp EXG Pill to make all this a lot easier.

Its name refers to the fact that it can be used for several different bio-electrical sensing applications: ECG, EMG, EOG and EEG, which deal with signals coming from the heart, muscles, eyes and brain, respectively. To enable such flexibility, the board has connectors for two or three electrodes, as well as solder pads to mount resistors and capacitors to adjust the gain and bandwidth. An instrumentation amplifier increases the strength of the desired signal while rejecting noise and interference.

The form factor allows easy connection to electrodes on one side and a data acquisition system on the other. Measuring just 25.4 mm long and 10 mm wide, it should be easy to integrate into any type of biosensing gizmo you can come up with. [Deepak] has made several demo setups, showing him using the Pill with an Arduino to measure his heart rate, detect eye blinks, and even control a robot arm using his own arm muscles!

The EXG Pill is an evolution of an earlier EMG-only project. We’ve seen several great ECG and EEG projects before, but is the first time we’ve seen one amplifier that can do them all.

Listening In On Muscles With The BioAmp EMG Pill

Ever felt like what your MCU of choice misses is a way to read the electrical signals from your muscles? In that case [Deepak Khatri] over at Upside Down Labs has got your back with the BioAmp EMG Pill. Described as an affordable, open source electromyography (EMG) module, based around a TL074 quad low-noise JFET-input opamp. At just over 32×10 millimeters, it’s pretty compact as well.

The onboard opamp ensures that the weak electrical signals captured from the muscles when they move are amplified sufficiently that the ADC of any microcontroller or similar can capture the signal for further processing. Some knowledge of how to set up an EMG is required to use the module, of course, and the TL074 opamp prefers an input voltage between 7-30 V. Even so, it has all the basics onboard, and the KiCad project is freely available via the above linked GitHub project.

In addition, [Deepak] also tweeted about working on an affordable, open source active prosthetics controller (and human augmentation device), which has us very much interested in what other projects may come out of Upside Down Labs before long. After, all we’re no strangers to hacking with biosignals.

Hacked Prosthesis Leads To Mind-Controlled Electronic Music

As amazing as prosthetic limbs have become, and as life-changing as they can be for the wearer, they’re still far from perfect. Prosthetic hands, for instance, often lack the precise control needed for fine tasks. That’s a problem for [Bertolt Meyer], an electronic musician with a passion for synthesizers with tiny knobs, a problem he solved by hacking his prosthetic arm to control synthesizers with his mind. (Video, embedded below.)

If that sounds overwrought, it’s not; [Bertolt]’s lower arm prosthesis is electromyographically (EMG) controlled through electrodes placed on the skin of his residual limb. In normal use, he can control the servos inside the hand simply by thinking about moving muscles. After experimenting a bit with an old hand, he discovered that the amplifiers in the prosthesis could produce a proportional control signal based on his inputs, and with a little help from synthesizer manufacturer KOMA Electronik, he came up with a circuit that can replace his hand and generate multiple control voltage channels. Plugged into any of the CV jacks on his Eurorack modular synths, he now has direct mind control of his music.

We have to say this is a pretty slick hack, and hats off to [Bertolt] for being willing to do the experiments and for enlisting the right expertise to get the job done. Interested in the potential for EMG control? Of course there’s a dev board for that, and [Bil Herd]’s EMG signal processing primer should prove helpful as well.

Continue reading “Hacked Prosthesis Leads To Mind-Controlled Electronic Music”

Muscle Your Way Into Music

Inspired by an old Old Spice commercial, [Juliodb96] decided he too wanted to make music by flexing his muscles. An Arduino and a MyoWare sensor did the trick. However, he also tells you how to make your own sensors, if you are so inclined. You can see the instrument in action in the video below.

If you use the ready-made MyoWare sensors, this is a pretty easy project. You just respond to sensor input by playing some notes. If you decide to roll your own, you’ll have some circuit building ahead of you.

In particular, the signal conditioning for the sensors involves filtering to eliminate signals not in the 20 Hz to 300 Hz passband, several amplifiers, a rectifier, and a clipper. This requires 3 IC packages and a handful of discrete components.

Unlike the original commercial (see the second video, below), there are no moving parts for actuating actual instruments. However, that wouldn’t be hard to add with some servo motors, air pumps, and the like. This may seem frivolous, but we had to wonder if it could be used to allow musical expression for people who could not otherwise play an instrument.

This isn’t the first time we’ve seen the MyoWare in action. We’ve even talked about signal processing that is useful for this kind of application.

Listen To Your Body

[John Miller] has the perfect response next time he complains about an ache or pain and one of his friends says, “You should listen to your body!” As you can see in the video below, he already does. Using two 9V batteries and some instrumentation amplifiers, [John] built an electromyography (EMG) rig.

If you haven’t heard of EMG, think of EEG or EKG, but for muscles instead of your brain or your heart. The LT1167 amplifier is well-suited for this application and even has a data sheet showing how to create an EMG circuit. [John] also used some more garden-variety op amps and the ubiquitous LM386N chip for audio amplification.

Continue reading “Listen To Your Body”

Recording Functioning Muscles To Rehab Spinal Cord Injury Patients

[Diego Marino] and his colleagues at the Politecnico di Torino (Polytechnic University of Turin, Italy) designed a prototype that allows for patients with motor deficits, such as spinal cord injury (SCI), to do rehabilitation via Functional Electrical Stimulation. They devised a system that records and interprets muscle signals from the physiotherapist and then stimulates specific muscles, in the patient, via an electro-stimulator.

The acquisition system is based on a BITalino board that records the Surface Electromyography (sEMG) signal from the muscles of the physiotherapist, while they perform a specific exercise designed for the patient’s rehabilitation plan. The BITalino uses Bluetooth to send the data to a PC where the data is properly crunched in Matlab in order to recognize and to isolate the muscular activity patterns.

After that, the signals are ‘replayed’ on the patient using a relay-board connected to a Globus Genesy 600 electro-stimulator. This relay board hack is mostly because the Globus Genesy is not programmable so this was a fast way for them to implement the stimulator. In their video we can see the muscle activation being replayed immediately after the ‘physiotherapist’ performs the movement. It’s clearly a prototype but it does show promising results.

Continue reading “Recording Functioning Muscles To Rehab Spinal Cord Injury Patients”

This DIY Wearable Assist Goes Beyond Traditional Therapy

Bodo Hoenen and his family had an incredible scare. His daughter, Lorelei, suddenly became ill and quickly went from a happy and healthy girl to one fighting just to breathe and unable to move her own body. The culprit was elevated brain and spinal pressure due to a condition called AFM. This is a rare polio-like condition which is very serious, often fatal. Fortunately, Lorelei is doing much better. But this health crisis resulted in nearly complete paralysis of her left upper arm.

Taking an active role in the health of your child is instinctual with parents. Bodo’s family worked with health professionals to develop therapies to help rehabilitate Lorelei’s arm. But researching the problem showed that success in this area is very rare. So like any good hacker he set out to see if they could go beyond the traditional to build something to increase Lorelei’s odds.

What resulted is a wearable prosthesis which assists elbow movement by detecting the weak signals from her bicep and tricep to control an actuator which moves her arm. Help came in from all over the world during the prototyping process and the project, which was the topic of Bodo Hoenen’s talk at the Hackaday SuperConference, is still ongoing. Check that out below and the join us after the break for more details.

Continue reading “This DIY Wearable Assist Goes Beyond Traditional Therapy”