Converting A Porsche 944 To Run A MAF

Electronic fuel injection was a big leap forward for engine control. However, early implementations often left something to be desired. This was the case for [Rob] and his Porsche 944, which had relied on an old-fashioned mechanical air flow meter (AFM). He decided to replace this with a modern mass air flow (MAF) sensor instead, and documented the process online.

The output of the sensors was compared with a rig built using a vacuum cleaner to create air flow.

AFMs are often a target for replacement on old cars. They’re usually based on a flap that moves a potentiometer wiper across a carbon trace which wears out over the years. They can also present an air flow restriction in some cases, limiting performance. MAF sensors instead measure the amount of air flowing through with a hot wire. The amount of current required to maintain the temperature of the wire indicates the amount of air flowing through the sensor. They’re less restrictive and readily available as they’re used in many cars today.

To run a MAF in place of the AFM requires a circuit to emulate the AFM’s output. [Rob] used a STM32 Cortex-M0 to read the MAF, and then output the relevant voltage to the Porsche’s engine computer via PWM and a low pass filter. To figure out how to map the MAF’s output to match the AFM, [Rob] built a rig to blow air through both devices in series, and measuring their output on an oscilloscope. This data was used to program the STM32 to output the right emulated AFM voltage for the given MAF signal.

It’s a great piece of work from [Rob] that has his Porsche running happily on new parts. We’ve seen similar hacks done to other cars before, as well! Video after the break.

Continue reading “Converting A Porsche 944 To Run A MAF”

Macro Model Makes Atomic Force Microscopy Easier To Understand

For anyone that’s fiddled around with a magnifying glass, it’s pretty easy to understand how optical microscopes work. And as microscopes are just an elaboration on a simple hand lens, so too are electron microscopes an elaboration on the optical kind, with electrons and magnets standing in for light and lenses. But atomic force microscopes? Now those take a little effort to wrap your brain around.

Luckily for us, [Zachary Tong] over at the Breaking Taps YouTube channel recently got his hands on a remarkably compact atomic force microscope, which led to this video about how AFM works. Before diving into the commercial unit — but not before sharing some eye-candy shots of what it can do — [Zach] helpfully goes through AFM basics with what amounts to a macro version of the instrument.

His macro-AFM uses an old 3D-printer as an X-Y-Z gantry, with a probe head added to the printer’s extruder. The probe is simply a sharp stylus on the end of a springy armature, which is excited into up-and-down oscillation by a voice coil and a magnet. The probe rasters over a sample — he looked at his 3D-printed lattices — while bouncing up and down over the surface features. A current induced in the voice coil by the armature produces a signal that’s proportional to how far the probe traveled to reach the surface, allowing him to map the sample’s features.

The actual AFM does basically the same thing, albeit at a much finer scale. The probe is a MEMS device attached to — and dwarfed by — a piece of PCB. [Zach] used the device to image a range of samples, all of which revealed fascinating details about the nanoscale realm. The scans are beautiful, to be sure, but we really appreciated the clear and accessible explanation of AFM.

Continue reading “Macro Model Makes Atomic Force Microscopy Easier To Understand”

NIST Uses Optical Resonance To Probe Atoms

Have you ever stood under a dome and whispered, only to hear the echo of your voice come back much louder? Researchers at NIST used a similar principle to improve the atomic force microscope (AFM), allowing them to measure rapid changes in microscopic material more accurately than ever before.

An AFM works by using a minuscule sharp probe. The instrument detects deflections in the probe, often using a piezoelectric transducer or a laser sensor. By moving the probe against a surface and measuring the transducer’s output, the microscope can form a profile of the surface. The NIST team used a laser traveling through a circular waveguide tuned to a specific frequency. The waveguide is extremely close (150 nm) to a very tiny probe weighing about a trillionth of a gram. When the probe moves a very little bit, it causes the waveguide’s characteristics to change to a much larger degree and a photodetector monitoring the laser light passing through the resonator can pick this up.

Continue reading “NIST Uses Optical Resonance To Probe Atoms”

This DIY Wearable Assist Goes Beyond Traditional Therapy

Bodo Hoenen and his family had an incredible scare. His daughter, Lorelei, suddenly became ill and quickly went from a happy and healthy girl to one fighting just to breathe and unable to move her own body. The culprit was elevated brain and spinal pressure due to a condition called AFM. This is a rare polio-like condition which is very serious, often fatal. Fortunately, Lorelei is doing much better. But this health crisis resulted in nearly complete paralysis of her left upper arm.

Taking an active role in the health of your child is instinctual with parents. Bodo’s family worked with health professionals to develop therapies to help rehabilitate Lorelei’s arm. But researching the problem showed that success in this area is very rare. So like any good hacker he set out to see if they could go beyond the traditional to build something to increase Lorelei’s odds.

What resulted is a wearable prosthesis which assists elbow movement by detecting the weak signals from her bicep and tricep to control an actuator which moves her arm. Help came in from all over the world during the prototyping process and the project, which was the topic of Bodo Hoenen’s talk at the Hackaday SuperConference, is still ongoing. Check that out below and the join us after the break for more details.

Continue reading “This DIY Wearable Assist Goes Beyond Traditional Therapy”

Building An Atomic Force Microscope On The Cheap!

LEGO2NANO, are building an open hardware AFM (Atomic Force Microscope).

AFMs are a kind of probe microscope. Unlike an optical microscope, a probe is used to “feel” the topology of a surface. An atomic force microscope uses a flexible cantilever with a nanometer scale tip on the end. As the tip scans across the surface it will be deflected by its interaction with the surface. A laser spot is usually reflected off the back of the cantilever, and captured by a photodiode array. The angle of the reflected beam, and therefore which photodiodes are excited lets you know how much the cantilever was deflected by the surface.

One of the challenges of building an AFM is developing an actuator that can move with nanoscale precision. We recently reported on [Dan Berard]s awesome capacitor actuator, and have previously reported on his STM build which uses a piezo buzzer. LEGO2NANO are experimenting with a number of different configurations, including using Piezo buzzers, but in a different configuration to [Dan]s system.

The LEGO2NANO project runs as a yearly summer school to encourage high school students to take part in the ambitious task of building an AFM for a few hundred dollars (commercial instruments cost about 100,000USD). While the project isn’t yet complete, whatever the outcome the students have clearly learned a lot, and gained an exciting insight into this cutting edge microscopy technique.

3D Printing Atomic Force Microscopy

[Andres] is working with an Atomic Force Microscope, a device that drags a small needle across a surface to produce an image with incredible resolution. The AFM can produce native .STL files, and when you have that ability, what’s the obvious next step? That’s right. printing atomic force microscope images.

The AFM image above is of a hydrogel, a network of polymers that’s mostly water, but has a huge number of crosslinked polymers. After grabbing the image of a hydrogel from an Agilent 5100 AFM, [Andres] exported the STL, imported it into Blender, and upscaled it and turned it into a printable object.

If you’d like to try out this build but don’t have access to an atomic force microscope, never fear: you can build one for about $1000 from a few pieces of metal, an old CD burner, and a dozen or so consumable AFM probes. Actually, the probes are going to be what sets you back the most, so just do what they did in olden times – smash diamonds together and look through the broken pieces for a tip that’s sufficiently sharp.