Continuous-Path 3D Printed Case Is Clearly Superior

[porchlogic] had a problem. The desire was to print a crystal-like case for an ESP32 project, reminiscent of so many glorious game consoles and other transparent hardware of the 1990s. However, with 3D printing the only realistic option on offer, it seemed difficult to achieve a nice visual result. The solution? Custom G-code to produce as nice a print as possible, by having the hot end trace a single continuous path.

The first job was to pick a filament. Transparent PLA didn’t look great, and was easily dented—something [porchlogic] didn’t like given the device was intended to be pocketable. PETG promised better results, but stringing was common and tended to reduce the visual appeal. The solution to avoid stringing would be to stop the hot end lifting away from the print and moving to different areas of the part. Thus, [porchlogic] had to find a way to make the hot end move in a single continuous path—something that isn’t exactly a regular feature of common 3D printing slicer utilities.

The enclosure itself was designed from the ground up to enable this method of printing. Rhino and Grasshopper were used to create the enclosure and generate the custom G-code for an all-continuous print. Or, almost—there is a single hop across the USB port opening, which creates a small blob of plastic that is easy to remove once the print is done, along with strings coming off the start and end points of the print.

Designing an enclosure in this way isn’t easy, per se, but it did net [porchLogic] the results desired. We’ve seen some other neat hacks in this vein before, too, like using innovative non-planar infill techniques to improve the strength of prints.

Continue reading “Continuous-Path 3D Printed Case Is Clearly Superior”

The Trials Of Trying To Build An Automatic Filament Changer

Running out of filament mid-print is a surefire way to ruin your parts and waste a lot of time. [LayerLab] was sick of having this problem, and so sought to find a proper solution. Unfortunately, between off-the-shelf solutions and homebrew attempts, he was unable to solve the problem to his satisfaction.

[LayerLab] had a simple desire. He wanted his printer to swap to a second spool of filament when the first one runs out, without ruining or otherwise marring the print. It sounds simple, but the reality is more complicated. As an Australian, he couldn’t access anything from InfinityFlow, so he first attempted to use the “auto refill” features included on the Bambu Labs AMS 2. However, it would routinely make filament changes in outside wall areas of a print, leaving unsightly marks and producing poorer quality parts.

His next effort was to use the Wisepro Auto Refill Filament Buffer. It’s a feeder device that takes filament from two spools, and starts feeding the backup spool in to your printer when the primary spool runs out. Unfortunately, [LayerLab] had a cavalcade of issues with the device. It would routinely feed from the secondary spool when there was still primary filament available, jamming the device, and it didn’t come with a proper mounting solution to work with consumer printers. It also had bearings popping out the top of the housing. Attempts to rework the device into a larger twin-spool rig helped somewhat, but ultimately the unreliability of the Wisepro when changing from one spool to another meant it wasn’t fit for purpose. Its feeder motors were also to trigger the filament snag cutters that [LayerLab] had included in his design.

Ultimately, the problem remains unsolved for [LayerLab]. They learned a lot along the way, mostly about what not to do, but they’re still hunting for a viable automatic filament changer solution that suits their needs. Filament sensors help, but can only do so much. If you reckon you know the answer, or a good way forward, share your thoughts in the comments. Video after the break.

Continue reading “The Trials Of Trying To Build An Automatic Filament Changer”

Open Source 5-Axis Printer Has Its Own Slicer

Three-axis 3D printing has been with us long enough that everybody knows the limitations, but so far, adding extra axes has been very much a niche endeavor. [Daniel] at Fractal Robotics wants to change that, with the Fractal 5 Pro 5-axis printer, and its corresponding Fractal Cortex slicer.

The printer looks like an extra-beefy Voron from a distance, which is no surprise as [Daniel] admits to taking heavy inspiration from the Voron Trident. The Fractal 5 shares a core-XY geometry with the Voron, using beefy 30 mm x 30 mm extrusions. Also like the Voron, it runs Klipper on a Raspberry Pi hiding in the base. Under a standard-looking printhead using a BondTech extruder and E3D volcano hotend, we find the extra two axes hiding under the circular build plate. The B axis is a gantry that can pivot the build plate assembly a full 90 degrees; the A axis spins the plate without limit thanks to the slip rings built into the design.

The extruder may look fairly normal, but it has actually been designed very carefully to allow the nozzle to get as close as possible to the build plate when the B-axis is at 90 degrees. It looks like the E3D hotend is actually the limiting factor there, which gives plenty of design freedom when planning prints in the accompanying Fractal Cortex slicer.

Continue reading “Open Source 5-Axis Printer Has Its Own Slicer”

A 3D printer is in the process of printing a test piece. The printer has two horizontal linear rails at right angles to each other, with cylindrical metal rods mounted horizontally on the rails, so that the rods cross over the print bed. The print head slides along these rods.

An Open-Concept 3D Printer Using Cantilever Arms

If you’re looking for a more open, unenclosed 3D printer design than a cubic frame can accommodate, but don’t want to use a bed-slinger, you don’t have many options. [Boothy Builds] recently found himself in this situation, so he designed the Hi5, a printer that holds its hotend between two cantilevered arms.

The hotend uses bearings to slide along the metal arms, which themselves run along linear rails. The most difficult part of the design was creating the coupling between the guides that slides along the arms. It had to be rigid enough to position the hotend accurately and repeatably, but also flexible enough avoid binding. The current design uses springs to tension the bearings, though [Boothy Builds] eventually intends to find a more elegant solution. Three independent rails support the print bed, which lets the printer make small alterations to the bed’s tilt, automatically tramming it. Earlier iterations used CNC-milled bed supports, but [Boothy Builds] found that 3D printed plastic supports did a better job of damping out vibrations.

[Boothy Builds] notes that the current design puts the X and Y belts under considerable load, which sometimes causes them to slip, leading to occasional layer shifts and noise in the print. He acknowledges that the design still has room for improvement, but the design seems quite promising to us.

This printer’s use of cantilevered arms to support the print head puts it in good company with another interesting printer we’ve seen. Of course, that design element does also lend itself to the very cheapest of printers.

Continue reading “An Open-Concept 3D Printer Using Cantilever Arms”

A blue 3DBenchy is visible on a small circular plate extending up through a cutout in a flat, reflective surface. Above the Benchy is a roughly triangular metal 3D printer extruder, with a frost-covered ring around the nozzle. A label below the Benchy reads “2 MIN 03 SEC.”

Managing Temperatures For Ultrafast Benchy Printing

Commercial 3D printers keep getting faster and faster, but we can confidently say that none of them is nearly as fast as [Jan]’s Minuteman printer, so named for its goal of eventually printing a 3DBenchy in less than a minute. The Minuteman uses an air bearing as its print bed, feeds four streams of filament into one printhead for faster extrusion, and in [Jan]’s latest video, printed a Benchy in just over two minutes at much higher quality than previous two-minute Benchies.

[Jan] found that the biggest speed bottleneck was in cooling a layer quickly enough that it would solidify before the printer laid down the next layer. He was able to get his layer speed down to about 0.6-0.4 seconds per layer, but had trouble going beyond that. He was able to improve the quality of his prints, however, by varying the nozzle temperature throughout the print. For this he used [Salim BELAYEL]’s postprocessing script, which increases hotend temperature when volumetric flow rate is high, and decreases it when flow rate is low. This keeps the plastic coming out of the nozzle at an approximately constant temperature. With this, [Jan] could print quite good sub-four and sub-thee minute Benchies, with almost no print degradation from the five-minute version. [Jan] predicts that this will become a standard feature of slicers, and we have to agree that this could help even less speed-obsessed printers.

Now onto less generally-applicable optimizations: [Jan] still needed stronger cooling to get faster prints, so he designed a circular duct that directed a plane of compressed air horizontally toward the nozzle, in the manner of an air knife. This wasn’t quite enough, so he precooled his compressed air with dry ice. This made it both colder and denser, both of which made it a better coolant. The thermal gradient this produced in the print bed seemed to cause it to warp, making bed adhesion inconsistent. However, it did increase build quality, and [Jan]’s confident that he’s made the best two-minute Benchy yet.

If you’re curious about Minuteman’s motion system, we’ve previously looked at how that was built. Of course, it’s also possible to speed up prints by simply adding more extruders.

I Gotta Print More Cowbell

Since the earliest days of affordable, home 3D printers, the technology behind them has been continuously improving. From lowering costs, improving print quality, increasing size and detail, and diversifying the types of materials, it’s possible to get just about anything from a 3D printer today with a minimum of cost. Some of the things that printers can do now might even be surprising, like this upgrade that makes [Startup Chuck]’s 3D printer capable of printing realistic-sounding cowbells out of plastic.

The key to these metal-like prints is a filament called PPS-CF which is a carbon fiber-reinforced polyphenylene sulfide, or PPS. PPS-CF has a number of advantages over other plastics including high temperature tolerance and high dimensional stability, meaning its less likely to warp or deform even in harsh environments. But like anything with amazing upsides, there are some caveats to using this material. Not only does the carbon fiber require more durable extruder nozzles but PPS-CF also needs an extremely hot print head to extrude properly in addition to needing a heated bed. In [Startup Chuck]’s specific case he modified his print head to handle temperatures of 500°C and his print bed to around 100°C. This took a good bit of work just to supply it with enough energy to get to these temperatures and caused some other problems as well, like the magnet on the printer bed demagnetizing above around 75°C.

To get to a working cowbell took more than just printer upgrades, though. He had to go through a number of calibrations and test prints to dial in not only the ideal temperature settings of the printer but the best thicknesses for the cowbell itself so it would have that distinct metallic ring. But cowbells aren’t the only reason someone might want to print with carbon-reinforced materials. They have plenty of uses for automotive, chemical processing, high voltage, and aerospace applications and are attainable for home 3D printers. Just make sure to take some basic safety precautions first.

Continue reading “I Gotta Print More Cowbell”

Upgrade Your Filament Dryer With A Swiveling Filament Port

Many FDM filament dryers have a port through which you can guide the filament. This handy feature allows you to print from the spool without removing it from the dryer, saving time and limiting exposure to (moist) air. Unfortunately, these exit ports aren’t always thought out very well, mostly in terms of the angle with the spool as it unrolls. The resulting highly oblique orientation means a lot of friction of the filament on the side of the port. This issue is addressed in a recent [Teaching Tech] video, with a simple, low-cost solution.

The basic idea is to have a swiveling port, inspired by a spherical bearing. The design shown in the video uses a PC4-M6 pneumatic connector to pass the PTFE tube. Connector choice is critical here, as many PC4-M6 pneumatic connectors won’t accommodate the PTFE.  As a fallback, you can drill out a connector to enable this.

Once the connector is sorted, you need a 13 mm (~0.5″) step drill bit to widen the opening in the filament dryer. This ready-to-print version has 10 degrees of freedom in any direction, but you can adapt it to fit your needs. With this mod installed, the angle with which the filament enters the port should remain as close to zero as possible, preventing both friction and damage to the port and filament.

Continue reading “Upgrade Your Filament Dryer With A Swiveling Filament Port”