Trickle Down: When Doing Something Silly Actually Makes Sense

One of the tropes of the space race back in the 1960s, which helped justify the spending for the part of the public who thought it wasn’t worth it, was that the technology developed for use in space would help us out here back on earth. The same goes for the astronomical expenses in Formula 1, or even on more pedestrian tech like racing bikes or cinematography cameras. The idea is that the boundaries pushed out in the most extreme situations could nonetheless teach us something applicable to everyday life.

This week, we saw another update from the Minuteman project, which is by itself entirely ridiculous – a 3D printer that aims to print a 3D Benchy in a minute or less. Of course, the Minuteman isn’t alone in this absurd goal: there’s an entire 3D printer enthusiast community that is pushing the speed boundaries of this particular benchmark print, and times below five minutes are competitive these days, although with admittedly varying quality. (For reference, on my printer, a decent-looking Benchy takes about half an hour, but I’m after high quality rather than high speed.)

One could totally be forgiven for scoffing at the Speed Benchy goal in general, the Minuteman, or even The 100, another machine that trades off print volume for extreme speed. But there is definitely trickle-down for the normal printers among us. After all, pressure advance used to be an exotic feature that only people who were using high-end homemade rigs used to care about, and now it’s gone mainstream. Who knows if the Minuteman’s variable temperature or rate smoothing, or the rigid and damped frames of The 100, or its successor The 250, will make normal printers better.

So here’s to the oddball machines, that push boundaries in possibly ridiculous directions, but then share their learnings with those of us who only need to print kinda-fast, but who like to print other things than little plastic boats that don’t even really float. At least in the open-source hardware community, trickle-down is very real.

A blue 3DBenchy is visible on a small circular plate extending up through a cutout in a flat, reflective surface. Above the Benchy is a roughly triangular metal 3D printer extruder, with a frost-covered ring around the nozzle. A label below the Benchy reads “2 MIN 03 SEC.”

Managing Temperatures For Ultrafast Benchy Printing

Commercial 3D printers keep getting faster and faster, but we can confidently say that none of them is nearly as fast as [Jan]’s Minuteman printer, so named for its goal of eventually printing a 3DBenchy in less than a minute. The Minuteman uses an air bearing as its print bed, feeds four streams of filament into one printhead for faster extrusion, and in [Jan]’s latest video, printed a Benchy in just over two minutes at much higher quality than previous two-minute Benchies.

[Jan] found that the biggest speed bottleneck was in cooling a layer quickly enough that it would solidify before the printer laid down the next layer. He was able to get his layer speed down to about 0.6-0.4 seconds per layer, but had trouble going beyond that. He was able to improve the quality of his prints, however, by varying the nozzle temperature throughout the print. For this he used [Salim BELAYEL]’s postprocessing script, which increases hotend temperature when volumetric flow rate is high, and decreases it when flow rate is low. This keeps the plastic coming out of the nozzle at an approximately constant temperature. With this, [Jan] could print quite good sub-four and sub-thee minute Benchies, with almost no print degradation from the five-minute version. [Jan] predicts that this will become a standard feature of slicers, and we have to agree that this could help even less speed-obsessed printers.

Now onto less generally-applicable optimizations: [Jan] still needed stronger cooling to get faster prints, so he designed a circular duct that directed a plane of compressed air horizontally toward the nozzle, in the manner of an air knife. This wasn’t quite enough, so he precooled his compressed air with dry ice. This made it both colder and denser, both of which made it a better coolant. The thermal gradient this produced in the print bed seemed to cause it to warp, making bed adhesion inconsistent. However, it did increase build quality, and [Jan]’s confident that he’s made the best two-minute Benchy yet.

If you’re curious about Minuteman’s motion system, we’ve previously looked at how that was built. Of course, it’s also possible to speed up prints by simply adding more extruders.

It’s A Bench, But It’s Not Benchy

Whatever the nuances are surrounding the reported taking down of remixes derived from the famous Benchy 3D printer stress test, it was inevitable that in its aftermath there would be competing stress tests appear under more permissive licensing. And so it has come to pass, in the form of [Depep1]’s Boaty, a model that’s not a boat, but a bench. Sadly this is being written away from a 3D printer so we can’t try it, but we can immediately see that its low bed contact area from having spindly legs would be a significant test for many printers’ bed adhesion, and it has overhangs and bridges aplenty.

It’s always interesting to see new takes on a printer stress test, after all we can all use something to check the health of our machines. But the Benchy saga isn’t something we think should drive you away from the little boat we know and love, as it remains an open-source model as it always has been. We don’t know the exact reasons why the derivatives were removed, but we understand from Internet scuttlebut that the waters may be a little more cloudy than at first supposed. If there’s any moral at all to the story, it lies in reading and understanding open source licences, rather than just assuming they all allow us to do anything we want.

Meanwhile it’s likely this model will be joined by others, and we welcome that. After all, innovation should be part of what open source does.

Missed the Benchy takedown story? Catch up here.

Thanks [Jeremy G] for the tip.

3DBenchy Starts Enforcing Its No Derivatives License

[Editor’s note: A few days later, it looks now like Prusa pulled the models of their own accord, because of their interpretation of the copyright law. Creative Tools and NTI claim that they were not involved.]

Nobody likes reading the fine print, least of all when you’re just downloading some 3D model. While printing a copy for personal use this is rarely an issue, things can get a lot more complicated when you make and distribute a derived version of a particular model.

Case in point the ever popular 3DBenchy model, which was intended to serve as a diagnostic aid by designer [Creative Tools] (recently acquired by [NTI Group] ). Although folks have been spinning up their own versions of this benchmark print for years, such derivative works were technically forbidden by the original model’s license — a fact that the company is now starting to take seriously, with derivative models reportedly getting pulled from Printables.

The license for the 3DBenchy model is (and always has been) the Creative Commons BY-ND 4.0, which requires attribution and forbids distributing of derivative works. This means that legally any derived version of this popular model being distributed on Thingiverse, Printables, etc. is illegal, as already noted seven years ago by an observant user on Reddit. According to the message received by a Printables user, all derived 3DBenchy models will be removed from the site while the license is now (belatedly) being enforced.

Although it’s going to be a bit of an adjustment with this license enforcement, ultimately the idea of Creative Commons licenses was that they set clear rules for usage, which become meaningless if not observed.

Thanks to [JohnU] for the tip.

All Aboard The Good Ship Benchy

We’ll go out on a limb here and say that a large portion of Hackaday readers are also boat-builders. That’s a bold statement, but as the term applies to anyone who has built a boat, we’d argue that it encompasses anyone who’s run off a Benchy, the popular 3D printer test model. Among all you newfound mariners, certainly a significant number must have looked at their Benchy and wondered what a full-sized one would be like. Those daydreams of being captain of your ship may not have been realized, but [Dr. D-Flo] has made them a reality for himself with what he claims is the world’s largest Benchy. It floats, and carries him down the waterways of Tennessee in style!

The video below is long but has all the details. The three sections of the boat were printed in PETG on a printer with a one cubic meter build volume, and a few liberties had to be taken with the design to ensure it can be used as a real boat. The infill gaps are filled with expanding foam to provide extra buoyancy, and an aluminium plate is attached to the bottom for strength. The keel meanwhile is a 3D printed sectional mold filled with concrete. The cabin is printed in PETG again, and with the addition of controls and a solar powered trolling motor, the vessel is ready to go. Let’s face it, we all want a try!

Continue reading “All Aboard The Good Ship Benchy”

Big Benchy Is A Boat That Really Boats

Benchy is that cute little boat that everyone uses to calibrate their 3D printer. [Emily The Engineer] asked the obvious question—why isn’t it a real working boat? Then she followed through on the execution. Bravo, [Emily]. Bravo.

The full concept is straightforward, but that doesn’t make it any less fun. [Emily] starts by trying to get small Benchys to float, and then steadily steps up the size, solving problems along the way. By the end of it, the big Benchy is printed out of lots of smaller sections that were then assembled into a larger whole. This was achieved with glue and simply using a soldering iron to melt parts together. It’s a common technique used to build giant parts on smaller 3D printers, and it works pretty well.

The basic hull did okay at first, save for some stability problems. Amazingly, though, it was remarkably well sealed against water ingress. It then got a trolling motor, survived a capsizing, and eventually took to the open water with the aid of some additional floatation.

We’ve seen big Benchys before, and we’ve seen fully functional 3D-printed boats before, too. It was about time the two concepts met in reality. Video after the break.

Continue reading “Big Benchy Is A Boat That Really Boats”

Benchy In A Bottle

Making something enjoyable often requires a clever trick. It could be a way to cut something funny or abuse some peripheral in a way it was never designed for. Especially good tricks have a funny way of coming up again and again. [DERAILED3D] put a 3d printed benchy in a bottle with one of the best tricks 3d printing has.

The trick is stopping the print part way through and tweaking it. You can add manual supports or throw in some PTFE beads to make a generator. The benchy isn’t the print being paused; the bottle is. The benchy is a standard print, and the bottle is clear resin. Once halfway through, they paused the print, and the benchy was left suspended in the bottle with a bit of wire. Of course, [DERAILED3D] moved quickly as they risked a layer line forming on the delicate resin after a minute or two of pausing. The difficulty and mess of tweaking a gooey half-finished resin print is likely why we haven’t seen many attempts at playing with the trick, but we look forward to more clever hacks as it gets easier.

The real magic is in the post-processing of the bottle to make it look as much like glass as possible. It’s a clever modern twist on the old ship in the bottle that we love. Video after the break.

Continue reading “Benchy In A Bottle”