Changing Color Under Pressure

When you saw the picture for this article, did you think of a peacock’s feather? These fibers are not harvested from birds, and in fact, the colors come from transparent rubber. As with peacock feathers, they come from the way light reflects off layers of differing materials, this is known as optical interference, and it is the same effect seen on oil slicks. The benefit to using transparent rubber is that the final product is flexible and when drawn, the interference shifts. In short, they change color when stretched.

Most of the sensors we see and feature are electromechanical, which has the drawback that we cannot read them without some form of interface. Something like a microcontroller, gauge, or a slew of 555 timers. Reading a single strain gauge on a torque wrench is not too tricky, but simultaneously reading a dozen gauges spread across a more complex machine such as a quadcopter will probably require graphing software to generate a heat map. With this innovation it could now be done with an on-board camera in real-time. Couple that with machine learning and perhaps you could launch Skynet. Or build a better copter.

The current proof-of-concept weaves the fibers into next-generation bandages to give an intuitive sense of how tightly a dressing should be applied. For the average first-aid responder, the rule is being able to slide a finger between the fabric and skin. That’s an easy indicator, but it only works after the fact whereas saying that the dressing should be orange while wrapping gives constant feedback.

Flexiphone Rises From The Ashes Of Broken Instruments

The mechanics of an old Rhodes Piano, and a set of chromatic saucer bells rescued from a reed organ. What do these two things have to do with each other? If you’re [Measured Workshop], they are the makings of a new instrument. The Flexiphone is a transposable instrument with a piano keyboard and interchangeable sound source.

The Rhodes is a great stage instrument. Unlike a piano with strings, it uses tines mounted above the key mechanism. It is also relatively compact for an analog instrument. This made it perfect as a donor for the Flexiphone’s keyboard. [Measured Workshop] cut they mechanism down to 30 keys, just under 2 octaves. The key mechanism was also cleaned up and restored with new felt.

The sounding portion of the Flexiphone is a set of chromatic saucer bells. The bells are mounted on a felt covered threaded rod, which itself sits in a wood frame. The bell frame sits on top of the base in one of three slots. Each slot is a halftone transposed from the last. Simply moving the bells allows the player to transpose the entire instrument. The bells and their rod frame can also be completely removed and replaced with any other sound source.

The Flexiphone sounds great — sometimes. As [Measured Workshop] says, bells contain many harmonics. playing single or double notes sounds rather sweet, but chords can sometimes become a shrill assault on the ears. Still, it’s an awesome hack with plenty of potential for future mods.

Continue reading “Flexiphone Rises From The Ashes Of Broken Instruments”