Exploring The Dell N1108T-ON Ethernet Switch

In an era where everything seems to be getting “smarter” every year, it will probably come as no surprise to find that even relatively middling networking hardware is now packing advanced features and considerable computational power. A case in point is the Dell N1108T-ON Ethernet switch. Despite only costing around $100 USD on the second hand market, [Ben Cox] discovered this particular switch was capable of a lot more than what was advertised by poking around its onboard operating system.

It all started by plugging into the serial port on the front of the switch, which [Ben] happily notes is an integrated FTDI USB serial adapter to make life easy. Booting into recovery mode gave him local shell access, and some poking around determines it’s the sort of BusyBox-powered Linux system that you’d expect on an embedded device. The biggest discoveries were that it was running a relatively recent kernel (3.8.1), and that it apparently had Python installed.

The reverse shell Python script

From there, [Ben] found out that these switches have a feature where the administrator can install and run Python “applications” by packaging them up as tarballs and copying them from a USB flash drive. So he wrote up a simple Python program that used the socket library to open up a reverse shell to his desktop computer, and to his surprise, it worked perfectly on the first try. Now with root access, the fun really started.

The next step was getting an SSH installed and running on the switch, so that he didn’t have to do the reverse shell trick every time. He then started installing the packages necessary to turn the switch into a secure VPN tunnel with Wireguard. This took a little fiddling as [Ben] didn’t have the option of installing the normal Wireguard kernel module, but he eventually got the necessary tools modified and cross-compiled to ARM. He believes this is just the start of what’s capable on devices like this, and we’re interested in seeing where the community goes from here.

We’ve seen hackers add management capability to a “dumb” unmanaged switch in the past, but software modifications like this promise to make the creation of custom, secure, networks far easier even on a hacker’s budget. A lot has certainly changed since the last time we saw somebody really dive into a professional Ethernet switch.

How To Use Docker To Cross Compile For Raspberry Pi (and More)

It used to be tedious to set up a cross compile environment. Sure you can compile on the Raspberry Pi itself, but sometimes you want to use your big computer — and you can use it when your Pi is not on hand like when on an airplane with a laptop. It can be tricky to set up a cross compiler for any build tools, but if you go through one simple step, it becomes super easy regardless of what your real computer looks like. That one step is to install Docker.

Docker is available for Linux, Windows, and Mac OS. It allows developers to build images that are essentially preconfigured Linux environments that run some service. Like a virtual machine, these images can run together without interfering with each other. Unlike a virtual machine, Docker containers (the running software) are lightweight because they share the same underlying kernel and hardware of the computer.

The reality is, setting up the Raspberry Pi build environment isn’t any easier. It is just that with Docker, someone else has already done the work for you and you can automatically grab their setup and keep it up to date. If you are already running Linux, your package manager probably makes the process pretty easy too (see [Rud Merriam’s] post on that process). However, the nice thing about the images is it is a complete isolated environment that can move from machine to machine and from platform to platform (the Windows and Mac platforms use a variety of techniques to run the Linux software, but it is done transparently).

Continue reading “How To Use Docker To Cross Compile For Raspberry Pi (and More)”

Code Craft: Cross Compiling For The Raspberry Pi

Sometimes there’s just no place like your desktop. You’ve already got your favorite development tools and references setup or installed and it’s a pain when you’re trying to work on an unfamiliar, or simply uncustomized, system. On your desktop everything is at your fingertips. If you want to search the web, the browser is just an alt-tab away. If you need a calculator, it’s right there to run. Your editor highlights syntax in your favorite colors already.

When developing on a Raspberry Pi, you leave all these creature comforts behind unless you spend the time to configure the Pi to your liking. Then it all gets wiped when you install a new distribution, like the recent change from Wheezy to Jessie. Even then it’s frustrating to switch back and forth between the desktop and the Pi because there is always something on the other system that you need. My usual comment is, “dirty word”, literally.

Cross-developing on your desktop is a very workable solution. We’re going to walk through setting up your desktop and a Pi to do this. This means loading a Pi ARM toolchain on your desktop and a debugging server on the Pi. This’ll let you develop and debug from in the comfort of your desktop. An added advantage is when you put that Pi in a robot you can debug over a wireless link.

Continue reading “Code Craft: Cross Compiling For The Raspberry Pi”