Check Your Clip Leads

[Matthias] bought cheap clip leads online and, wisely, decided to check them. We’ve had the same experience that he’s had. Sometimes, these cheap leads are crimped and don’t make good contact. However, you can usually solder them and completely fix them. Not this time, however, as you can see in the video below.

The resistance for the leads was a bit on the high side, which is usually a sure sign of this problem. But soldering didn’t really make a big difference. A homemade clip lead, for example, read under 20 milliohms, but a test lead from the new batch read about 260 milliohms even after being soldered.

Continue reading “Check Your Clip Leads”

What To Know When Buying Chips That Haven’t Been Made For Three Decades

Those of us who have worked with vintage sound generator chips such as the Yamaha FM synthesizers in recent years have likely run into our own fair share of “fake” or “remarked” chips, sometimes relabeled to appear as a chip different than the die inside the packaging entirely. [David Viens] from Plogue has finally released his findings on the matter after 3 years of research. (Video, embedded below.)

The first thing to determine is in what way are these chips “fake”? Clearly no new YM2612’s were manufactured by Yamaha in 2015, but that doesn’t mean that these are simply unlicensed clones put out by another die factory. [David] explains how these chips are often original specimens sourced from recycled electronic waste from mostly environmentally unsafe operations in China, which are then reconditioned and remarked to be passed as “new” by resellers. Thankfully, as of 2017, he explains that most of these operations are now being shut down and moved into an industrial park where the work can be done in a less polluting manner.

The next thing that [David] dives into is how these remarked chips can be spotted. He explains how to use telltale signs in the IC packaging to identify which chip plant produced them, and visible indications of a chip that has been de-soldered from a board and reconditioned. There are different ways in which the remarking can be done, and sometimes it’s possible to undo the black-top, as it’s called, and reveal the original markings underneath with the simple application of acetone with a cotton swab.

We’ve talked about fake chips and how they can lead to hardware failure here before, but in the case of chips like these which aren’t manufactured anymore, we’re not left with much choice other than FPGA or software reimplementations. Check out [David]’s 40-minute look into these chips after the break.

Continue reading “What To Know When Buying Chips That Haven’t Been Made For Three Decades”

Fake Ram: Identifying A Counterfeit Chip

[Robert Baruch‏] had something strange on his hands. He had carefully decapped 74LS189 16×4 static RAM, only to find that it wasn’t a RAM at all. The silicon die inside the plastic package even had analog elements, which is not what one would expect to find in an SRAM. But what was it? A quick tweet brought in the cavalry, in the form of chip analysis expert [Ken Shirriff].

[Ken] immediately realized the part [Robert] had uncovered wasn’t a 74 series chip at all. The power and ground pins were in the wrong places. Even the transistors were small CMOS devices, where a 74 series part would use larger bipolar transistors. The most glaring difference between the mystery device and a real LS819 was the analog elements. The mystery chip had a resistor network, arranged as an R-2R ladder. This configuration is often used as a simple Digital to Analog Converter (DAC).

Further analysis of the part revealed that the DAC was driven by a mask ROM that was itself indexed using a linear feedback shift register. [Ken] used all this information to plot out the analog signal the chip would generate. It turned out to be a rather sorry looking sine wave.

The mystery part didn’t look like any function generator or audio chip of the era. [Ken] had to think about what sort of commodity part would use lookup tables to generate an audio waveform. The answer was as close as his telephone — a DTMF “touch tone” generator, specifically a knockoff of a Mostek MK5085.

Most investigators would have stopped there. Not [Ken] though. He delved into the construction and function of the DTMF generator. You can find the full analysis on his site. This isn’t [Ken’s] first rodeo with decapped chips. He’s previously examined the Intel 8008 and presented a talk on silicon reverse engineering at the 2016 Hackaday Superconference. [Robert] has also shown us how to pop the top of classic ceramic integrated circuits.

 

Counterfeit Hardware May Lead To Malware And Failure

Counterfeit parts are becoming increasingly hard to tell the difference from the real deal, the technology used by the counterfeiters has come on leaps and bounds, so even the experts struggle to tell the real product from a good fake. Mere fake branding isn’t the biggest problem with a counterfeit though, as ieee.com reports, counterfeit parts could contain malware or be downright dangerous.

Way back in 2014 the FBI charged [Marc Heera] with selling clones of the Hondata S300, a plugin engine module for Honda cars that reads sensors, and depending on their values can change idle speed, air-fuel mixture and a plethora of other car/engine related settings. What, might you ask, is the problem, except they are obviously not genuine parts? According to Honda they had a number of issues such as random limits on engine rpm and occasionally failure to start. While the fake Hondata S300 parts where just poor clones that looked the part, anything connected to an engine control unit brings up huge safety concerns and researchers have shown that through ECU access, they could hijack a car’s steering and brakes.

It’s not just car parts being cloned, remember the fake USB-to-serial chips of FTDI-Gate? Entire routers are also being cloned, which doesn’t sound too bad until you realise that the cloners could configure your internet traffic to be redirected through their network for snooping. In 2010 Saudi citizen [Ehab Ashoor] was convicted of buying cloned Cisco Systems gigabit interface converters with the intention of selling them to the U.S Dept of Defense. While nothing sinister was afoot in [Ashoor]’s case other than greed, these routers were to be deployed in Iraq for use by the Marine Corps networks. They were then to be used for security, transmitting troop movements and relaying intelligence from field operations back to HQ.

So who are the cloners and why are they doing it? It is speculated that some of them may be state funded, as there are a lot of countries who do not trust American silicon. Circuits are reverse engineered and find their way to the international market. Then just like the FTDI-Gate case, cloners want to make profits from others intellectual property. This also brings up another question, if there is a mistrust of American silicon, nearly everything is made in China these days so why should we trust anything from there? Even analog circuits can be made to spy on you, as you can see from the piece we recently featured on compromising a processor using an analog charge pump. If you want to defend yourself from such attacks, perhaps look at previous Hackaday Prize finalist, ChipWhisperer.