Whack-A-Disk

By now most floppy disks have been relegated to the dustbin of history, with a few exceptions for obscure industrial applications using legacy hardware and, of course, much of the world’s nuclear weapons arsenals. In fact, they’re so rare to see in the world anymore that many below a certain age don’t recognize the “save” symbol commonly used in application user interfaces. Without a use case, and with plenty of old floppies still laying around, [Rob] took a pile of them and built this Whack-a-Mole-style game.

The game has a number of floppy-disk-specific features compared to the arcade classic, though. First, there’s no mallet, so the player must push the floppy disks into the drive manually. Second, [Rob] went to somewhat exceptional lengths to customize the drives to that sometimes the disks jump out of the drive, forcing the player to grab them and put them back in to score points in the game. He did this without needing to install high-powered solenoids in the drives too. As for the game software itself, it all runs on an Amiga 600 and even includes a custom-made soundtrack for the 30-second game.

Getting the drives just right did take a number of prototypes, but after a few versions [Rob] has a working game that looks fun to play and is a clever use of aging hardware, not to mention the fact that it runs on a retro computer as well. Of course, for the true retro feel, you’ll want to make sure you find a CRT for the display somewhere, even though they’re getting harder to find now than old floppy disk drives.

Continue reading “Whack-A-Disk”

Probably The Most Esoteric Commodore 64 Magazine

The world of computer enthusiasts has over time generated many subcultures and fandoms, each of which has in turn spawned its own media. [Intric8] has shared the tale of his falling down a rabbit hole as he traced one of them, a particularly esoteric disk magazine for the Commodore 64. The disks are bright yellow, and come with intricate home-made jackets and labels. Sticking them into a 1541 drive does nothing, because these aren’t standard fare, instead they require GEOS and a particularly upgraded machine. They appear at times in Commodore swap meets, and since they formed a periodical there are several years’ worth to collect that extend into the 2000s, long after the heyday of the 64.

Picking up nuggets of information over time, he traces them to Oregon, and the Astoria Commodore User Group, and to [Lord Ronin], otherwise known as David Mohr. Sadly the magazine ended with his death in 2009, but until then he produced an esoteric selection of stories, adventure games, and other software for surely one of the most exclusive computer clubs in existence. It’s a fascinating look into computer culture from before the Internet, even though by 2009 the Internet had well and truly eclipsed it, when disks like these were treasured for the information they contained. So if you find any of these yellow Penny Farthing disks, make sure that they or at least their contents are preserved.

Surprisingly, this isn’t the only odd format disk magazine we’ve seen.

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Funny Keyboard

What’s the most important keyboard macro you know? Honestly, it’s probably Ctrl-S. But do you use that one often enough? Chances are, you do not. What you need is a giant, dedicated Save keyboard that looks like a floppy disk.

A physical Save button that looks like a floppy disk and sends Ctrl-S over USB-C.
Image by [Makestreme] via Hackaday.IO
[Makestreme] recently started creating YouTube videos, but wasn’t pressing Save often enough. Couple that with editing software that crashes, and the result is hours of lost work.

Just like you’d expect, pressing the floppy icon triggers Ctrl-S when connected over USB-C. Internally, it’s a Seeeduino Xiao, a push button, and some wires.

The floppy disk itself is made of foam board, and everything is encased in a picture frame. If you want to make one for yourself, [Makestreme] has some great instructions over on IO.

Continue reading “Keebin’ With Kristina: The One With The Funny Keyboard”

It’s Like LightScribe, But For Floppies!

Back when CD-Rs were the thing, there were CD burner drives which would etch images in the unoccupied areas of a CD-R. These so-called LightScribe drives were a novelty of which most users soon tired, but they’re what’s brought to our mind by [dbalsom]’s project. It’s called PNG2disk, and it does the same job as LightScribe, but for floppies. There’s one snag though; the images are encoded in magnetic flux and thus invisible to the naked eye. Instead, they can be enjoyed through a disk copying program that shows a sector map.

The linked GitHub repository has an example, and goes in depth through the various options it supports, and how to view images in several disk analysis programs. This program creates fully readable disks, and can even leave space for a filesystem. We have to admit to being curious as to whether such an image could be made physically visible using for example ferrofluid, but we’d be the first t admit to not being magnetic flux experts.

PNG2disk is part of the Fluxfox project, a library for working with floppy disk images. Meanwhile LightScribe my have gone the way of the dodo, but if you have one you could try making your own supercaps.

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The TRON Keyboard

[Folaefolc] was craving a new keyboard build a few weeks ago and got inspired by the humble 3.5″ floppy disk. So much so that he decided to make a split keyboard with each half having the exact footprint of a floppy — 90 mm x 94 mm. And you know the PCBs have floppy details silkscreened on the back. Just check out the gallery.

A split keyboard with a 3.5" floppy disk footprint for each half. An actual floppy sits between the two halves.
Image via [Folaefolc] via reddit
This bad boy uses a pair of Liatris microcontrollers, which are made by splitkb and are designed to be drop-in replacements for Pro Micros and an alternative to the RP2040.

The other fun part of this build is that [Folaefolc] used RJ9 connectors to join the halves instead of something like TRRS.

Beneath those candy keycaps are 34 Kailh choc v1 switches shoved into hot swap sockets in case [Folaefolc] changes his mind. Gerbers are available if you want to build one of these cuties!

Via reddit

Continue reading “Keebin’ With Kristina: The One With The TRON Keyboard”

Remember The Tri-Format Floppy Disk?

These days, the vast majority of portable media users are storing their files on some kind of Microsoft-developed file system. Back in the 1980s and 1990s, though, things were different. You absolutely could not expect a floppy disk from one type of computer to work in another. That is, unless you had a magical three-format disk, as [RobSmithDev] explains.

The tri-format disk was a special thing. It was capable of storing data in Amiga, PC, and Atari ST formats. This was of benefit for cover disks—a magazine could put out content for users across all three brands, rather than having to ship multiple disks to suit different machines.

[RobSmithDev] started investigating by reading the tri-format disk with his DiskFlashback tool. The tool found two separate filesystems. The Amiga filesystem took up 282 KB of space. The second filesystem contained two folders—one labelled PC, the other labelled ST. The Atari ST folder contained 145KB of data, while the PC folder used 248 KB. From there, we get a breakdown on how the data for each format is spread across the disk, right down to the physical location of the data. The different disk formats of each system allowed data to be scattered across the disk such that each type of computer would find its relevant data where it expected it to be.

It’s a complex bit of disk engineering that allowed this trick to work, and [Rob] explains it in great detail. We love nitty gritty storage hacks around here. Video after the break.

Continue reading “Remember The Tri-Format Floppy Disk?”

A Modern PC With A Retro OS

Despite the rise of ARM processors in more and more computers from embedded systems to daily driver PCs, the x86 architecture maintains a stronghold in the computing space that won’t be going away anytime soon. One of the main drivers of this is its beachhead in industrial systems; the x86 architecture is backwards-compatible farther back than many of us have been alive and in situations where machines need to run for years with minimum downtime it’s good to know you can grab any x86 system off the shelf and it’ll largely work. This is also true for gaming, so if you’re like [Yeo Kheng Meng] and want to run games like DOOM natively on modern hardware it’s certainly possible, although there are a few catches.

This build goes into the design of a modern AMD Ryzen 5 desktop computer, with all of the components selected specifically for their use running software more than three decades old now. [Yeo Kheng Meng] is targeting DOS 6.22 as his operating system of choice, meaning that modern EFI motherboards won’t necessarily work. He’s turned to business class products as a solution for many of these issues, as motherboards targeting business and industrial customers often contain more support for antiquated hardware like PS/2 and parallel ports while still having modern amenities like DDR5 memory slots. PS/2 ports additionally are an indicator that the motherboard will supports older non-EFI boot modes (BIOS) and can potentially run DOS natively. Everything here can also run modern operating systems, since he isn’t building this system only to run DOS and retro games.

Beyond the motherboard choice, he’s also using a Soundblaster card for audio which is a design choice generally relegated to history, but still used in modern gaming by a dedicated group. There’s also a floppy drive running via a USB header adapter cable. Of course, there are a few problems running DOS and other era-appropriate software natively on such incomprehensibly fast hardware (by early 90s standards). Some video games were hard coded to the processor clock of the x86 process of the era, so increasing the clock speed orders of magnitude results in several playability issues. In emulators it’s easier to provide an artificially slow clock speed, but on real hardware this isn’t always possible. But [Yeo Kheng Meng] has done a lot to get this modern computer running older software like this. Another take we’ve seen for retro gaming on original hardware is this system which uses a brand-new 486 processor meant for use in industrial settings as well.