Foam Cutter Moves Like A Hot Knife Through Butter

Make enough attempts to cut foam using whatever you’ve got — utility knife, hacksaw, serrated plastic knife — and you’ll wish hard for something that cuts cleaner, faster, and better. While there are all sorts of ways to build a hot wire foam cutter, this design from [jasonwinfieldnz] is both interesting and imitable.

If you don’t already know it, nichrome wire is nifty stuff that’s readily available in thrift store hair dryers and toasters. It stretches as it heats up, and shrinks as it cools back down.

The interesting part of this build is that instead of using a spring to keep tension on the nichrome wire, [jasonwinfieldnz] designed and 3D-printed a bow out of PLA that does the job elegantly. While [jason] was initially concerned that the bow might possibly melt, he found in practice that although the bow does get warm to the touch, it’s nowhere near hot enough to even warp.

One nice touch is the simple fence that rides along two slots and secures with wingnuts. We also like that [jason] made this foam cutter largely from scrap material, and rather than buy a spool of nichrome, he opted for a skinny heating element and pillaging the wire.

If you’re a nichrome noob, know that it doesn’t take much juice to do the job. Even though a computer power supply is what [jason] had lying around, it’s complete overkill, so you would definitely want to limit the current. Check out the build video after the break.

Still not portable enough for you? All you really need is a 18650, some nichrome, and a few bits and bobs to hold it all together.

Continue reading “Foam Cutter Moves Like A Hot Knife Through Butter”

Interactive CNC Foam Cutter Churns Out Abstract Art

Foam is certainly an indispensable raw material for various craft and construction projects. Any serious sculptor however, inevitably grows tired of grinding through a foam block using a simple preheated utensil. The next step up, is to assemble a simple but thoroughly effective hot wire cutting contraption, formed out of a thin guitar wire held taut on a “C” shaped mounting frame. Finally, the addition of some electronics to regulate the power delivery makes this simple tool useful for most settings.

[Freddie] has taken this basic idea a step further, by building a complete multi-axis CNC foam cutter intended as an interactive exhibit on computational art. The CNC has the traditional three Cartesian axes but the platform hosting the foam piece can also rotate, introducing an additional degree of freedom. As this is indented to be controlled by attendees, there is no G-code in the mix, rather the inputs of an Xbox controller are applied directly to the work piece.

What is very interesting is how the resulting tool path is visualised and displayed. [Freddie] explains that while the user input tool path could be generated and displayed as equivalent G-code, it does not capture and convey the inherent organic nature of the finished pieces. The solution [Freddie] came up with is to display the toolpath much like a series of musical notes!

We would have loved to have a go at this machine in person, but seeing that isn’t possible in the current circumstances, you can either build a simpler machine we featured earlier or [Freddie] could perhaps fire up a camera and let us control it via the interweb, with a live video feed ofcourse!

Continue reading “Interactive CNC Foam Cutter Churns Out Abstract Art”

Build A Foam Cutter Right Now

Cutting foam is difficult with traditional methods. The best way is with a hot wire. If you read Hackaday, it is a good bet you can figure out how to use electricity to make a wire hot without any help. However, there’s something  clever about [MrGear’s] minimal build.

As you can see in the video below, he uses a 9V battery, a clip, some popsicle sticks, and the wire from a ballpoint pen. He also used a switch, but we couldn’t help but think that was unnecessary  since you could just unclip the battery to turn the device on and off. Since he used hot glue to attach the switch to the battery, replacing the battery would be a pain.

Continue reading “Build A Foam Cutter Right Now”

Hot-Wire CNC Foam Cutter From E Waste

A couple of old DVD ROM drives and a compact photo printer is fairly standard fare at the thrift store, but what do you do with them? Hack them up to make a CNC foam cutter of course!

[Jonah] started with a couple LITE-ON brand DVD RW drives, which use stepper motors instead of plain old DC motors. This is a huge score since steppers make accurate positioning possible. With the internal frames removed, threaded rod and nuts were used to hold the two units parallel to each other forming the Z axis.

The feed mechanism from a Canon compact photo printer was then bolted onto the bottom to form the Y axis. Add a bit of nichrome wire for the cutting element (this can be found in old hair dryers) onto where the laser assembly of the DVD rom once lived, and you have the mechanics done.

Control is handled by an Arduino and some easy-driver modules to interface with the steppers. G-Code is generated by CamBam, which handles various cad files, or has its own geometry editor.

This is a fantastic way to get your feet wet in several ways; Cracking things open to harvest parts, driving steppers with simple micocontrollers, modeling and generating g-code, etc. The one issue we see with this build is a chicken-or-egg problem since you need to have a cube of foam cut down to somewhat strict dimensions before it will fit in this cutter. But we suppose that is really just an iterative design problem.

Continue reading “Hot-Wire CNC Foam Cutter From E Waste”

Robo Foam Cutter Makes Short Work Of Your Foam Rolls

Tired of cutting your foam sheets down to size? [jgschmidt] certainly was, and after one-too-many hours cutting foam manually, he built himself a machine that cuts sheets automatically, and he guides you through the process step-by-step.

[jgschmidt’s] build is a clever assembly of stock parts acquired from ServoCity. That’s a nice touch, considering we don’t often see their components in quick hacks. With a stepper to feed more foam, and a stepper to drive the blade mechanism, the device can consistently cut foam from a roll to desired lengths.

The blade mechanism consists of two exacto blades fixed nose-to-nose such that the machine can cut on both forward and reverse sweeps. While we’ve certainly seen some stellar past foam cutter builds, we can’t resist drooling over the speedy throughput of [jgschmidt’s] machine as it cuts on both forward and back-strokes. Finally, when the blades dull, they can be swapped out for a few dime’s worth of new parts.

Many of the steps in [jgschmidt’s] build are laudably practical with a “get it done” attitude. From hot-glued wire insulation to the double-edged blade formed from exacto knives, we’re thrilled to see him take a few pieces off the shelf and few pieces off the web and build himself a new workshop tool. Perhaps the neatest feature of this hack is its ability to rapidly transform a raw material into numerous repeatable, useful forms for his customers.

via [Instructables]

Continue reading “Robo Foam Cutter Makes Short Work Of Your Foam Rolls”

DIY foam cutter made from Uni-Strut.

4 Axis CNC Foam Cutter Sports A Unistrut Frame

CNC Foam Cutters are capable of cutting out some pretty cool shapes that would otherwise be extremely difficult to do. They do this by pulling a heated metal wire though a block of foam. Electrical current passing through the wire heats it up causing the foam to melt away, there is no dust and no mess to clean up. [batchelc] decided to make his own large-scale CNC Foam Cutter and took a lot of photos along the way.

Since machine is 4 axis, meaning both sides can move forward/back and up/down independently of each other, tapered shapes are possible. One example where this would be helpful is cutting wings that are swept or have different profiles at each end.

DIY foam cutter made from Uni-Strut.

The main frame of the machine is made from Unistrut and measures a whopping 60 by 60 inches. Subtract the size of the mechanical components and the cutting area ends up being 48 by 42 and 22 inches high. The foam sits on an MDF bed, gravity is the only method of holding the foam down during cutting. The wire doesn’t actually touch the foam so there is no force applied to cause it to move. The hot wire moves slowly and melts the foam just a few thousands of an inch in front of the wire resulting in no contact between the two.

Both axes on each side are driven by 1/2-10″ lead screws supported by bearing blocks on both sides. The longitudinal axes smoothly traverse the length of the machine by means of skate bearings that ride on the Unistrut channel itself. The vertical axes have a plastic bushing that slides along a round shaft.

The control portion of the machine is a HobbyCC FoamPro kit that came with the 4 axis stepper motor control board and 4 NEMA 23 stepper motors. GMFC software is used to both generate the g-code and send the commands to the stepper motor control board.

Continue reading “4 Axis CNC Foam Cutter Sports A Unistrut Frame”

Not Having The Room Isn’t A Good Reason To Not Have A CNC Router Anymore

PhlatPrinter CNC Machine

Typically, CNC Machines take up a larger footprint than that of the raw material it is cutting. The size of such a machine may have prevented interested makers/hackers from buying or building one for themselves. If you are one of those people then you’d be interested in [Fly3DMon’s] series of CNC Router projects called PhlatPrinter.

A typical CNC Router has a bed that the work piece is mounted to and that work piece stays stationary. The tool then moves in 3 axes, removing material, leaving behind a finished part. The PhlatPrinter works more like a large format plotter, where the work piece is moved back and forth via rollers while the tool only moves in 2 directions. What this allows is a CNC Machine that takes up very little floor space when not in use that can handle any length of material!

Continue reading “Not Having The Room Isn’t A Good Reason To Not Have A CNC Router Anymore”