Bouncing Pack Eases Those Tired Shoulders

If you are a hillwalker, wherever your preferred stomping ground may be you’ll know the importance of a pack with a good strap system. A comfortable pack will make the difference between tiredness and agony, and can easily add a considerable difference to your daily range.

At Arizona State University’s Human Integration Laboratory, they were approached by the US Army to investigate means by which the effect of carrying a heavy backpack could be mitigated. A soldier’s full kit is extremely heavy, and while the best available webbing systems will make a contribution to the comfort of carrying it, they can only go so far. There is still the jarring effect of the impulse force of such a significant load bearing down on the soldier’s shoulders as it comes down after every step, and this when taken over a lengthy march makes a significant difference to overall endurance.

The ASU lab’s solution was to mount the load on a spring-loaded vertical actuator attached to the pack harness and frame. The on-board microcontroller judges the moment of maximum downward impulse force as the wearer comes down from a step, and applies a corresponding upward force to the actuator. Power comes from a lithium-ion battery pack. The effect is to make the load oscillate up and down, and to lessen the wear and tear on the shoulders. It does not reduce the weight you are carrying, but it does lift it off your shoulders for an instant just when you need it.

There is a video of it being tested in the sun-drenched Arizona mountains, that we’ve placed below the break.

Continue reading “Bouncing Pack Eases Those Tired Shoulders”

Hack Your Hike with this Arduino Puzzle Geocache

For those who love to hike, no excuse is needed to hit the woods. Other folks, though, need a little coaxing to get into the great outdoors, which is where geocaching comes in: hide something in the woods, post clues to its location online, and they will come. The puzzle is the attraction, and doubly so for this geocache with an Arduino-powered game of Hangman that needs to be solved before the cache is unlocked.

The actual contents of a geocache are rarely the point — after all, it’s the journey, not the destination. But [cliptwings]’ destination is likely to be a real crowd pleaser. Like many geocaches, this one is built into a waterproof plastic ammo can. Inside the can is another door that can only be unlocked by correctly solving a classic game of Hangman. The game itself may look familiar to long-time Hackaday readers, since we featured it back in 2009. Correctly solving the puzzle opens the inner chamber to reveal the geocaching goodness within.

Cleverly, [cliptwings] mounted the volt battery for the Arduino on top of the inner door so that cachers can replace a dead battery and play the game; strangely, the cache entry on Geocaching.com (registration required) does not instruct players to bring a battery along.

It looks like the cache has already been found and solved once since being placed a few days ago in a park north of Tucson, Arizona. Other gadget caches we’ve featured include GPS-enabled reverse caches, and a puzzle cache that requires IR-vision to unlock.

Continue reading “Hack Your Hike with this Arduino Puzzle Geocache”

Micro Wind Turbine For Hikers

[Nils Ferber] is a product designer from Germany. His portfolio includes everything from kitchen appliances to backpacks. One project, though, has generated a bit of attention. It’s a micro wind turbine aimed at long distance hikers.

Even on the trail, electronics have become a necessity. From GPS units to satellite phones, to ebook readers. Carrying extra batteries means more pack weight, so many hikers utilize solar panels. The problem is that when the sun is up, hikers are on the move – not very conducive to deploying a solar array. The Wind, however, blows all through the night.

[Nils] used carbon fiber tube, ripstop nylon, and techniques more often found in kite building to create his device. The turbine starts as a small cylindrical pack. Deploying it takes only a few minutes of opening panels and rigging guy wires. Once deployed, the turbine is ready to go.

While this is just a prototype, [Nils] claims it generates 5 Watts at a wind speed of 18 km/h, which can be used to charge internal batteries, or sent directly to any USB device. That seems a bit low for such a stiff wind, but again, this is just a prototype. Could you do better? Tell us in the comments! If you’re looking for a DIY wind generator on a slightly larger scale, you could just build one from bike parts.

Continue reading “Micro Wind Turbine For Hikers”