Mini Hygrometer Packs E-Paper Display

Historically, display technologies have always been power thirsty things. In the past, CRTs and incandescent bulbs sucked down electrons like they were free beer. Eventually, LEDs and LCDs came along and lowered this significantly, but the king of low power display technologies remains ePaper and eInk displays. Only requiring power when refreshing the display, they can be left off indefinitely, drawing little to no current. This is great for low-power builds such as [Andrew Lamchenko’s] miniature hygrometer. (Video, embedded below.)

The build runs on an nRF52811 microcontroller, hooked up to a 1.02″ ePaper display sourced for just $7. A SHT20 temperature and humidity sensor is then queried to sample the ambient conditions, and the results displayed on the screen. The benefit of this is that the device can be powered from a coin cell, and set to update at infrequent intervals – say, once per hour. It can then be checked by the user without having to turn on.

The low-power design means it would be the perfect device for leaving in a guitar case or humidor for months at a time. As a bonus, it’s also capable of Smart Home integration thanks to the Bluetooth capabilities onboard. It would likely be trivial to upgrade this into a tweeting humidor, the likes of which we haven’t seen since 2009!

Continue reading “Mini Hygrometer Packs E-Paper Display”

Tiny House Forecasts Weather

Before the information age, it wasn’t quite as easy to glean information about the weather. Sure, there were thermometers and barometers and rhymes about the sky, but if you lived in or near Germany back then you might have also had access to something called a “weather house” which could help predict rain. [Moritz] aka [Thinksilicon] found one of these antequated devices laying around, and went about modernizing it. (Google Translate from German)

A traditional weather house is essentially a hygrometer housed in an intricate piece of artwork. Two figures, typically a man and woman, are balanced on a platform that is suspended in the middle by a small section of horsehair. When the humidity is low, the hair tightens up and turns the platform one way, and when humidity is high — suggesting rain is coming — it turns the other way. When the man comes out of the house, it predicts rainfall.

To get the weather house upgraded, [Moritz] outfitted the front with an OLED display which replaced the traditional thermometer. Instead of using horsehair to spin the figures he installed a small servo on the platform. The entire house is controlled by an ESP8266 which pulls data from the Open Weather API and spins the figures based on the information it receives.

Much like unique clocks, we enjoy interesting weather indicating/forecasting builds. This one’s right up there with using squirrels to predict the weather, or having a small weather-recreation right on your bookshelf.

Tweetidor, The Tweeting Humidor


As cigar aficionados will tell you, cigars should be stored in climate controlled humidors to keep them in best condition for smoking. Most of the time a humidor is just a simple air-tight box with a hygrometer attached, which measures the relative humidity inside the box. Feeling as though he needed more control over the environment he kept his cigars in, [Justin] created the Tweetidor, a humidor that tweets its current temperature and humidity. Yes, you guessed it; the project is built around an Arduino. It’s a simple, useful project that is well documented and would be fun to recreate if you’re into cigars (and not tired of Twitter or Arduinos yet.) Combine this with the laser lighter and you’ve got a pretty nice setup.

UHF Power Harvesting


[Alanson Sample] and [Joshua R. Smith] have been experimenting with wireless power transfer for their sensing platform. Their microcontroller of choice is the MSP430, which we used on our e-paper clock. They chose it specifically for its ability to work with low voltages and they discus its specific behavior at different voltages. The first portion of their paper uses a UHF RFID reader to transmit to the sensor’s four stage charge pump. They added a supercap to provide enough power for 24 hours of logging while the node isn’t near a reader. For the second half of the paper, they use a UHF antenna designed for digital TV with the same circuit and pointed it at a television tower ~4.1km away. It had an open circuit voltage of 5.0V and 0.7V across an 8KOhm load, which works out to be 60uW of power. They connected this to the AAA battery terminals of the thermometer/hygrometer pictured above. It worked without issue. The thermometer’s draw on a lab power supply was 25uA at 1.5V.

It’s an interesting approach to powering devices. Do you have an application that needs something like this? For more on wireless power, checkout this earlier post on scratch building RFID tags.

[via DVICE]