Getting To The Heart Of A Baofeng

In amateur radio circles, almost no single piece of equipment serves as more of a magnet for controversy than the humble Baofeng handheld transceiver. It’s understandable — the radio is a shining example of value engineering, with just enough parts to its job while staying just on the edge of FCC rules. And at about $25 a pop, the radios are cheap enough that experimentation is practically a requirement of ownership.

But stripped down as the Baofeng may be, it holds secrets inside that are even more tempting to play with than the radio itself. And who better than [HB9BLA], a guy who has a suspiciously familiar Swiss accent, to guide us through the RF module at the heart of the Baofeng, the SA818. For about $8 you can get one of these little marvels off AliExpress and have nearly all the important parts of a VHF or UHF radio — an SDR transceiver, a power amp, and all the glue logic to make it work.

In the video below, [Andreas] puts the SA818 module through its paces with the help of a board that pairs the module with a few accessories, like an audio amp and a low-pass RF filter. With a Raspberry Pi and a Python library to control the module, it’s a decent imitation of the functionality of a Baofeng. But that’s only the beginning. By adding a USB sound card to the Pi, the setup was able to get into every ham’s favorite packet radio system, APRS. There are a ton of other applications for the SA818 modules, some of which [Andreas] mentions at the end of the video. Pocket-sized repeaters, a ridiculously small EchoLink hotspot, and even an AllStar node in an Altoids tin.

Of course, if you want to get in on the fun, you’re going to need an amateur radio license. Don’t worry, it’s easy — we’ll help you get there.

Continue reading “Getting To The Heart Of A Baofeng”

A Few Of My Favorite Things: Amateur Radio

Hackaday has among its staff a significant number of writers who also hold amateur radio licenses. We’re hardware folks at heart, so we like our radios homebrew, and we’re never happier than when we’re working at high frequencies.

Amateur radio is a multi-faceted hobby, there’s just so much that’s incredibly interesting about it. It’s a shame then that as a community we sometimes get bogged down with negativity when debating the minutia. So today let’s talk about a few of my favourite things about the hobby of amateur radio. I hope that you’ll find them interesting and entertaining, and in turn share your own favorite things in the comments below.

Continue reading “A Few Of My Favorite Things: Amateur Radio”

GPU Turned Into Radio Transmitter To Defeat Air-Gapped PC

Another week, another exploit against an air-gapped computer. And this time, the attack is particularly clever and pernicious: turning a GPU into a radio transmitter.

The first part of [Mikhail Davidov] and [Baron Oldenburg]’s article is a review of some of the basics of exploring the RF emissions of computers using software-defined radio (SDR) dongles. Most readers can safely skip ahead a bit to section 9, which gets into the process they used to sniff for potentially compromising RF leaks from an air-gapped test computer. After finding a few weak signals in the gigahertz range and dismissing them as attack vectors due to their limited penetration potential, they settled in on the GPU card, a Radeon Pro WX3100, and specifically on the power management features of its ATI chipset.

With a GPU benchmarking program running, they switched the graphics card shader clock between its two lowest power settings, which produced a strong signal on the SDR waterfall at 428 MHz. They were able to receive this signal up to 50 feet (15 meters) away, perhaps to the annoyance of nearby hams as this is plunk in the middle of the 70-cm band. This is theoretically enough to exfiltrate data, but at a painfully low bitrate. So they improved the exploit by forcing the CPU driver to vary the shader clock frequency in one megahertz steps, allowing them to implement higher throughput encoding schemes. You can hear the change in signal caused by different graphics being displayed in the video below; one doesn’t need much imagination to see how malware could leverage this to exfiltrate pretty much anything on the computer.

It’s a fascinating hack, and hats off to [Davidov] and [Oldenburg] for revealing this weakness. We’ll have to throw this on the pile with all the other side-channel attacks [Samy Kamkar] covered in his 2019 Supercon talk.

Continue reading “GPU Turned Into Radio Transmitter To Defeat Air-Gapped PC”

Hams Gone Wild: Amateur Radio Field Day 2019

Of all the images that amateur radio conjures up, the great outdoors doesn’t usually figure heavily. People seem to think hams sit in a dark room at a desk heavy with radio gear, banging out Morse code into late into the night and heedless of the world outside the window. All of which sort of sounds like hard-core gaming, really.

And while that image certainly applies in a lot of cases, hams do like to get out and about at least once a year. That day is upon us with the 2019 Amateur Radio Field Day. Hams across North America reserve the fourth full weekend of each June to tear themselves out of their shacks and get into the world to set up operations in some kind of public venue, generally a park or other green space. Part cookout, part community outreach, and part slumber party – it lasts all weekend and goes around the clock – hams use field day as a chance to show the general public where amateur radio really shines: real-time worldwide communications under austere conditions.

It’s also a chance to get folks excited about getting their license, with many Field Day locations hosting “Get on the Air” stations so that unlicensed folks can try making a contact under the supervision of a licensed operator. Licensed but underequipped hams also get the chance to spin the knobs on someone else’s gear, and maybe line up that first rig purchase. And there are plenty of opportunities to learn about new modes as well, such as FT8 and WSPR. As an example your scribe is looking for some guidance on getting started with APRS, the automated packet reporting system that’s used for things like high-altitude balloon tracking.

If you have any interest at all in learning how to properly operate radio equipment, you owe it to yourself to track down the nearest Field Day location and stop by. The American Radio Relay League (ARRL) has a ton of Field Day information, from a map to locate the 1500 Field Day sites to rules for the contests that will be run that weekend to guides for setting up and operating an effective Field Day setup. There will be 40,000 hams out there this year, and they’d all be thrilled if you drop by and ask a few questions.

Continue reading “Hams Gone Wild: Amateur Radio Field Day 2019”

The $50 Ham: Entry-Level Transceivers For Technicians

Last week , I covered the ridiculously low barriers to entry to amateur radio, both in terms of financial outlay and the process of studying for and passing the FCC examination. You’ve had seven days, so I assume that you’ve taken the plunge and are a freshly minted amateur radio operator. The next big question may be: Now what?

We briefly mentioned the image that ham radio is a rich old person’s hobby, and that reputation is somewhat deserved. For ham gear, there really is no upper limit on what you can spend. Glossy brochures and slick web pages hawk transceiver bristling with knobs and switches and loaded with the latest features, all of which will probably be obsolete within a few years when the Next Big Thing comes along and manufacturers respond with new, must-have models – looking at you, ICOM IC-7300. It’s no different than any other technology market, and enough people fall for that marketing to make it a going concern.

But thankfully, while there is no apparent ceiling on what you can spend on ham gear, there certainly is a floor, and it can be very, very low. Our $50 budget can go quite a long way to getting a new Technician on the air, if you’re willing to make some compromises and can forego the latest and greatest for a while.

Continue reading “The $50 Ham: Entry-Level Transceivers For Technicians”

Long-Range RFID With Feedback

Not long ago, we published an article about researchers adding sensor data to passive RFID tags, and a comment from a reader turned our heads to a consumer/maker version which anyone can start using right away (PDF). If you’re catching up, passive RFID technology is behind the key fobs and stickers which don’t need power, just proximity to the reader’s antenna. This is a much “hackier” version that works with discrete signals instead of analog ones. It will not however require writing a new library and programming new tags from the ground up just for the user to get started, so there is that trade-off. Sparkfun offers a UHF reader which can simultaneously monitor 25 of the UHF tags shown in this paper.

To construct one of these enhanced tags, the antenna trace is broken and then routed through a switching device such as a glass-break sensor, temperature limit switch, doorbell, or light sensor. Whenever continuity is restored the tag will happily send back its pre-programmed data, and the reader will acknowledge that somewhere one of the tags is seeing some activity. Nothing says this could not be applied to inexpensive RFID readers should you just want a temperature warning for your gecko terrarium or light sensor to your greenhouse‘s sealed controller.

Thank you, [Mike Massen], for your tip on RFID Doing More Than ID.

Continue reading “Long-Range RFID With Feedback”